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Abstract

In an auction, a seller may masquerade as one or more bidders in order to manipu-
late the clearing price. We characterize single-item auction formats that are shill-proof
in the sense that a profit-maximizing seller has no incentive to submit shill bids. We
distinguish between strong shill-proofness, in which a seller with full knowledge of bid-
ders’ valuations can never profit from shilling, and weak shill-proofness, which requires
only that the expected equilibrium profit from shilling is nonpositive. The Dutch auc-
tion (with a suitable reserve) is the unique (revenue-)optimal and strongly shill-proof
auction. Moreover, the Dutch auction (with no reserve) is the unique prior-independent
auction that is both efficient and weakly shill-proof. While there are multiple ex-post
incentive compatible, weakly shill-proof, and optimal auctions; any optimal auction can
satisfy only two properties in the set tstatic, ex-post incentive compatible, weakly shill-proofu.
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1 Introduction

1.1 Shill Bidding in Auctions

Shill Bidding in Practice. Auction theory typically assumes that an auction is carried
out as described (by the seller or a third party) and focuses solely on the bidders’ incen-
tives. Reality is often different. For example, while major auction houses like Christie’s or
Sotheby’s may appear to be carrying out textbook English (ascending) auctions, a degree of
skullduggery is often afoot. According to a New York Times article from 2000:

Some tricks of the trade, like an auctioneer’s drumming up excitement by ac-
knowledging nonexistent bids only he hears and potential buyers who bid with
nearly imperceptible secret signals, have been around for decades. Making up
bids, for instance, is known as “bidding off the chandelier” from an era when the
grand auction rooms were adorned with ornate lighting.1

The practice continues to this day: Christie’s Conditions of Sale for their flagship New
York location, in a section titled “Auctioneer’s Discretion,” states (among other things) that
“The auctioneer can. . .move the bidding backwards or forwards in any way he or she may
decide. . . .”2

Such chandelier bids or shill bids—bids submitted by the seller in order to manipulate
the final selling price—appear to be particularly common in online auctions. For example,
eBay has long gone out of its way to emphasize that shill bidding is forbidden and will be
punished:

We want to maintain a fair marketplace for all our users, and as such, shill bidding
is prohibited on eBay. . . eBay has a number of systems in place to detect and
monitor bidding patterns and practices. If we identify any malicious behavior,
we’ll take steps to prevent it.3

According to many eBay users, however, shill bidding remains rampant. Here’s a sample
quote from the eBay discussion forums:

The Sellers post a Buy Now price 3–4 times the actual cost of the item. Then
they place the item on an auction at $0.01. This to get as many views as possible.
The shill comes in shortly after the auction starts and . . . is there to prevent the
item from being sold below their profit margin.4

Chen et al. (2020) find that nearly 10% of all bidders on eBay Motors are shill bidders.
Shill-Proof Auctions. Much of auction theory to date encourages truthful bidding

through careful auction design, while punting on challenges like seller deviations and collu-
sion via appeal to ummodeled concepts such as the out-of-mechanism enforcement of rules.

1See Genteel Auction Houses Turning Aggressive, New York Times, April 24, 2000.
2See https://www.christies.com/help/buying-guide-important-information/

conditions-of-sale.
3See https://www.ebay.com/help/policies/selling-policies/selling-practices-policy/

shill-bidding-policy?id=4353.
4See https://community.ebay.com/t5/Buying/My-experience-with-Shill-bidders/td-p/

30402514.
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Anecdotes about eBay and other online platforms suggest that such methods are only par-
tially effective at deterring seller deviations. Thus, it makes sense to ask: To what extent
can these deviations instead be disincentivized through an auction’s design?

The goal of this paper is to understand which auction formats are “shill-proof” in the
sense that a seller cannot profit through the submission of shill bids. For private-value
auctions, which is our focus here, the reader might well wonder why shill bids matter at
all—assuming that the choice of reserve price doesn’t affect participation (as it does in the
eBay example), isn’t a shill bid the same thing as a reserve price?

The answer depends on when the seller has an opportunity to shill and the information
available to them at that time. For example, consider an English auction in which the seller
also participates as a shill bidder. Suppose the valuations of the (real) bidders are drawn
i.i.d. from a regular distribution F and that the opening bid of the auction is set optimally
(for revenue), to the monopoly price ρ� of F . As the auction proceeds, with the offered
price p starting at F and increasing from there (in increments of ϵ, say), the seller can shill
bid at any time. Suppose that the only additional information known to the seller at a given
round of the auction is that the remaining bidders are willing to pay at least p. Then, the
seller asks themself: “now that I know how many bidders are willing to pay at least p, do I
want to shill and reset the reserve price to p� ϵ?” Under our assumption that F is regular,
the answer is “no,” and an expected revenue–maximizing seller will never shill.5,6

Now suppose that the seller has full knowledge of bidders’ realized valuations. In this
scenario, the seller will certainly, in some cases, want to shill in an English auction to push
the price up to just below the highest of the bidders’ valuations. Lest this informational
assumption—that the seller knows the full valuation profile—seem impossibly demanding,
consider the Dutch (descending) auction (with an arbitrary reserve price). Here, any shill
bid by the seller terminates the auction immediately, leaving the seller holding the item and
earning zero revenue.

We map out a theory of “shill-proof” auctions, focusing on the following basic questions:

• Which auction formats are “strongly shill-proof” in the sense of the Dutch auction,
i.e., with shill bidding being unprofitable even with full knowledge of bidders’ realized
valuations?

• Which auction formats are “weakly shill-proof” in the sense of the English auction (with
bidders’ valuations drawn i.i.d. from a regular distribution and an optimally chosen
reserve price), i.e., with shill bidding being unprofitable in expectation at equilibrium?

• To what extent are strong and weak shill-proofness compatible with other desirable
properties such as optimality, efficiency, ex-post incentive compatiblility, and sealed-
bid implementation?

5Auction theory experts will now immediately recognize that the English auction with an optimally chosen
reserve price is not generally shill-proof in this sense when the valuation distribution is not regular.

6This doesn’t necessarily mean that the auctioneers at Christie’s are acting suboptimally, as bidders’
valuations in art auctions might be strongly positively correlated—see, for example, Footnote 18 of Milgrom
and Weber (1982) for more discussion.
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1.2 Overview of Results

Iterative auction formats like Dutch and English auctions play a central role in our theory,
and accordingly we study (real and shill) bidding in the extensive-form game that is induced
by a choice of auction format, relying on a framework for extensive-form auction analysis
developed by Li (2017) and Akbarpour and Li (2020). We consider single-item auctions
with N bidders. A subset of these are shill bidders, which we model as bidders with zero
private value for the item and with utility equal to the seller’s revenue.7 We assume that
the private valuations of the non-shill bidders are drawn i.i.d. from a known distribution
that is regular (see Definition 2.2). We also assume that shill bidders observe all actions.
An auction is then weakly shill-proof (Definition 2.3) if there exists an equilibrium of the
induced extensive-form game in which the shill bidders never shill (i.e., always bid their
true private value of 0). An auction is strongly shill-proof (Definition 2.4) if, moreover, shill
bidders’ equilibrium strategies are ex-post strategies. In our first two results, we focus on
public auctions (Definition 3.3), meaning auctions in which every bidder’s action is publicly
observable. This is arguably the most natural model for the analysis of typical iterative
auctions such as Dutch and English auctions. Note that a static auction like a sealed-bid
first-price auction is not public in this sense.

Next, we summarize the main results of this paper;8 see also Figure 1.
Strongly Shill-Proof Auctions. Our main result (Theorem 3.4) is a uniqueness

result for strongly shill-proof auctions: the Dutch auction (with consistent tie-breaking
and monopoly reserve price) is strongly shill-proof and optimal (i.e., maximizes the seller’s
expected revenue), and it is the only such auction in the public setting. In particular,
strongly shill-proof optimal auctions cannot avoid using a large number of rounds, and they
cannot be ex-post incentive compatible (for real bidders). The rough intuition for the proof
of this result is that: (i) No matter the information structure, strongly shill-proof auctions
must be pay-as-bid (Lemma 3.2); (ii) for any auction format other than a Dutch auction,
there exists a history in which some bidder i can indicate that her value is higher than 0
without the auction ending immediately; (iii) optimality in tandem with the public setting
then implies that this information effectively induces the auction to revise its reserve price
upward or increases perceived competitiveness for the item being sold, which reduces bid
shading; and thus (iv) there exist valuations for the bidders such that, if bidder i is a shill
bidder, shilling will increase the seller’s revenue.

Weakly Shill-Proof and Efficient Auctions. Our remaining results concern the
richer design space of weakly shill-proof auctions (which contains, at the least, both Dutch
and English auctions). We start by investigating efficient (and weakly shill-proof) public

7The prior literature has sometimes modeled shill bidding via an unknown number of bidders, with some
subset of the bidders who end up participating in the auction being shills. Our framework is essentially
equivalent: we can take N to be large and require 0 to be in the support of the valuation distribution; and
a bidder with value 0 is equivalent (in terms of outcomes) to a bidder not arriving.

8We focus on single-item auctions, but our uniqueness results a fortiori provide an upper bound on what
is possible for multiunit auctions, as well. More broadly, while our analysis is confined to the context of a
single auction, we implicitly bound what is achievable in a sequential auction setting. That said, there are
further potential incentives for shill bidding in an auction sequence, such as the desire to have a high clearing
price for the first auction in order to drive up attention to later ones; it is not clear that any mechanism
design could prevent this type of shill bidding incentive in full generality.
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auctions in which, at equilibrium, the item is always awarded to the (real) bidder with the
highest valuation. One example of such an auction is a Dutch auction with a reserve price of 0.
Interestingly, English auctions are not examples: with a zero reserve, it is not weakly shill-
proof (as shill bidders are motivated to push the price up to the monopoly price). But the
Dutch auction is not the only efficient and weakly shill-proof auction: beginning with an
English auction at the monopoly price and then, should there be no takers, concluding with
a Dutch auction (with no reserve) is another example.9 That this “hybrid” auction format
concludes with a Dutch auction is no accident: we prove (in Theorem 3.6) that every robustly
weakly shill-proof and efficient auction must conclude with a Dutch auction when all bidders’
valuations fall below the monopoly price ρ� of the distribution.10 In particular, no ex-post
incentive compatible auction can be robustly weakly shill-proof and efficient. It follows that
the Dutch auction is the unique prior-independent auction (in the sense of Dhangwatnotai
et al. (2015), with no dependence whatsoever on the valuation distribution) that is both
efficient and weakly shill-proof (Corollary 3.8).

Weakly Shill-Proof and Ex-Post Incentive Compatible Optimal Auctions.
The previous two results imply that ex-post incentive compatible auctions cannot be both
strongly shill-proof and optimal, nor can they be (robustly) weakly shill-proof and efficient.
The English auction (with an optimal reserve price) is, as we’ve noted, weakly shill-proof,
optimal, and ex-post incentive compatible. Is it the unique such auction? Does this com-
bination of properties require a potentially large number of rounds? Our next result (The-
orem 4.5) shows that, in general, the answer is no: interrupting an English auction after
a sufficiently large number of rounds and closing it out with a second-price auction among
the remaining bidders is also weakly shill-proof, optimal, and ex-post incentive compatible.
In fact, for any ε ¡ 0, we can always find a valuation distribution such that the number
of auction rounds that is required in the worst case to maintain weak shill-proofness is an
arbitrarily small fraction of the number of rounds needed in the English auction. (The next
result implies that the number of rounds cannot be reduced to 1.)

Shill-Proof and Ex-Post Incentive Compatible Static Auctions. Our last result
(Theorem 5.2), unlike the others, focuses on single-action auctions, meaning auction formats
that induce extensive-form games in which each bidder moves exactly once. Static auctions
are a special case of single-action auctions where each bidder moves simultaneously. Here,
in contrast to the prior result, we prove that no single-action auction can simultaneously
be weakly shill-proof, optimal, and satisfy even a very weak ex-post incentive compatiblil-
ity condition (see Definition 5.1). Thus, an optimal auction can satisfy two and only two of
the properties in the set tsingle-action, ex-post incentive compatible,weakly shill-proofu.11

9In fact, this auction format closely resembles the Honolulu–Sydney fish auction documented by Hafalir
et al. (2023).

10Here “robustly” means that the auction specification should depend only on the monopoly price ρ� of
the valuation distribution, and not on its more fine-grained details.

11Assuming a regular valuation distribution and a corresponding optimal reserve price, a second-price auc-
tion is optimal, single-action, and ex-post incentive compatible; a first-price auction is optimal, single-action,
and weakly shill-proof; and an English auction is optimal, ex-post incentive compatible, and weakly shill-
proof.
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Static Not Static
Strategy- Impossible Ascending, Screening Auction
Proof (Theorem 5.2) (Theorem 4.5)

Not Strategy- First-Price Auction Dutch Auction
Proof (Theorem 3.4)

(a) Weakly shill-proof and optimal auctions

Static Not Static
Strategy- Impossible Not Robustly
Proof (Theorem 5.2) (Theorem 3.6)

Not Strategy- Not Robustly Dutch Auction
Proof (Theorem 3.6) (Robustly Unique, Theorem 3.6)

(b) Weakly shill-proof and efficient auctions
Static Not Static

Strategy- Impossible Impossible
Proof (Theorem 3.4) (Theorem 3.4)

Not Strategy- Impossible Dutch Auction
Proof (Theorem 3.4) (Unique, Theorem 3.4)

(c) Strongly shill-proof and optimal auctions

Static Not Static
Strategy- Impossible Impossible
Proof (Theorem 3.6) (Theorem 3.6)

Not Strategy- Impossible Dutch Auction
Proof (Theorem 3.6) (Unique, Theorem 3.6)

(d) Strongly shill-proof and efficient auctions

Figure 1: Summary of Results. Characterization of single-item auction formats that are
strongly or weakly shill-proof, along with other properties such as optimality, efficiency, ex-
post incentive compatiblility, and sealed-bid implementations.

1.3 Related Work

While the idea and practice of shill bidding by a seller have long been well known, the auction
theory literature on the topic is surprisingly thin. Chakraborty and Kosmopoulou (2004)
consider common value auctions and focus on technological barriers (as opposed to auction
formats) that can mitigate shill bidding. Lamy (2009) studies shill bidding specifically in
English auctions in which bidders’ valuations are affiliated in the sense of Milgrom and
Weber (1982), and proves that shill bidding effectively cancels out the effects of affiliation in
equilibrium due to real bidders conditioning on bids being fake (see also Izmalkov (2004)).
Porter and Shoham (2005) consider a model similar to a second-price auction, motivated by
“cheating” by online platforms that can announce a manipulated auction outcome subsequent
to collecting all of the bidders’ bids. More recently, a number of works (e.g., Basu et al.
(2023); Chung and Shi (2023); Lavi et al. (2022); Roughgarden (2021)) have considered shill
bidding in the context of blockchain transaction fee mechanism design, with an emphasis on
knapsack auctions that are ex-post incentive compatible, shill-proof, and robust to various
forms of collusion. Ausubel and Milgrom (2006) and Day and Milgrom (2008) consider shill
bids by bidders in a multi-item auction, who are looking to exploit complementarities to
lower their payments in VCG-type mechanisms—as opposed to shill bids by a seller looking
to increase revenue, as is the case of this paper.12 Contemporary work by Zeng (2024)
also studies shill bidding, but takes a different approach to the problem. While we study
ex-interim deterrence against shill bidding in extensive form games, he groups auctions into
equivalence classes based on the outcome and primarily focuses on ex-ante deterrence against
the seller inserting additional bidders into the auction to increase perceived competition. The
results in that paper are complementary to ours: While we show that the dynamics of the
auction are important for preventing shill bidding, he shows that, when the shill bidders can
increase perceived competition outside of taking actions in the auction, only the posted price
auction is non-manipulable. See also Footnote 16.

Our theory of shill-proof auctions is similar in spirit to the theory of credible mechanisms

12More broadly there is a literature on sybil resistance referred to as “false-name proofness.” See, e.g.,
Conitzer et al. (2010) for a reference.
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developed by Akbarpour and Li (2020), and leverages their framework for extensive-form
auction analysis. That said, shill-proofness differs conceptually from credibility as shill-
proofness focuses on the auctioneer’s incentives to insert fake bids whereas credibility focuses
on the auctioneer’s incentive to truthfully report the actions of a bidder to other bidders.
Further, the results in this paper are also qualitatively different. For example, there are
a multitude of credible auctions, but only one strongly shill-proof auction and there are a
multitude of strategy-proof and weakly shill-proof auctions, but only one strategy-proof and
credible auction (see Section 6.1 for more discussion).

More recent research on credible mechanisms, usually with a focus on evading the impos-
sibility results of Akbarpour and Li (2020) under extra assumptions (such as adding crypto-
graphic tools), includes the work of Essaidi et al. (2022), Ferreira and Weinberg (2020), and
Chitra et al. (2023). More distantly related papers include that of Haupt and Hitzig (2021),
who prove a uniqueness result for the Dutch auction under contextual privacy constraints.

1.4 Outline of the Paper

In Section 2, we present the formal model of shill bidding in auctions. Section 3 studies
Dutch auctions and their benefits with respect to disincentivizing shill bidding. Section 4
explores which formats are both weakly shill-proofness and ex-post equilibrium for real bid-
ders. Section 5 presents our trilemma result for single-action auctions. And in Section 6, we
conclude the paper by discussing extensions.

2 Model

In this paper, we consider extensive-form, single item auctions. An extensive-form game G
is a tuple of possible histories H, and, for each history h P H, functions mapping h to: (i) a
player taking an action, P phq; (ii) a set of possible actions, Aphq; (iii) an information set,13

Iphq; and (iv) the most recent action taken, Aphq. As further notation, we denote the
starting history of the game by hH and the set of terminal histories as Z; we say h1   h if
h1 precedes h, i.e., there exists a sequence of actions that lead from h1 to h.

We restrict attention to single item auctions, which means that for every terminal history
z P Z, we can associate an allocation and transfer vector: z � px, tq, with

°N
i�1 xi ¤ 1 and

xi P t0, 1u for all i. As abuse of notation, we will use xpzq, tpzq to mean the vectors px, tq
associated with the terminal history z. We also assume perfect recall and finite depth.
(Definition O.1 in the Online Appendix gives a formal, thorough, and standard definition of
extensive form games.) Note that bidders’ values for the item are not built into the extensive-
form game G. Instead, a strategy is a function of both the information set of a bidder and
her value for the item. Like most papers in the extensive-form auction literature, we study
games with a finite type space because defining auctions with a continuum of types requires
defining a general class of continuous-time games. To the authors’ knowledge, there is no
theory of continuous time games that rivals the generality and flexibility of extensive-form
games.

13The information sets induce a partition over all possible histories. Players’ actions can condition only
on Iphq, not on h.
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2.1 Bidders – Real and Shill

In the auction, there is a set of potential bidders B, with |B| � N , who might participate. Of
these potential bidders, a set of real bidders R actually participates. Each bidder i P B has
an independent probability p of participating, P ri P Rs � p.14 The other bidders, S � BzR,
are shill bidders whose incentives are completely aligned with the seller/auctioneer’s, i.e.,
their utility is defined by the sum of real bidders’ transfers: for i P S, uipzq �

°
jPR tjpzq.

Importantly, the auction G cannot directly condition on the realization of R, i.e., the shill
bidders are indistinguishable from real bidders during the auction. Each real bidder i P R
has value vi for the item being sold where vi � F independently for each i. Each real
bidder has quasi-linear utility: for i P R, uipzq � xipzqvi � tipzq. We assume F is discrete,
with support V consisting of the ordered atoms 0 � v1   v2   . . .   vM , and we define
fpvkq � Pw�F

�
w � vk

�
to be the pmf of the distribution. As notation, for each shill bidder

i P S, we assign vi � 0 and let v � pv1, . . . , vNq. The choice of values for shill bidders does
not affect their incentives, and by supposing that their values are 0, we can define efficiency
and optimality (revenue maximizing) in terms of only v instead of v and R.15 Observe that
given how v is generated, we are in the standard, symmetric, single-item independent private
values (IPV) setting.

Real bidders have no information about who else is a real bidder.16 We assume that
shill bidders know the set of shill bidders and observe all previous actions taken. Formally,
for any history h, if P phq P S, then Iphq � thu. This assumption rules out games with
simultaneity (including static games) from the perspective of the shill bidders, but not real
bidders.17 Without cryptography or other unmodeled technologies, we view it as reasonable
to assume that while the auction may appear simultaneous to the real bidders, actions are
taking place sequentially and the seller can observe those actions.

Our equilibrium concept is pure-strategy Perfect Bayesian Equilibrium; a formal defini-
tion of the auction equilibrium pG, σq can be found in Definition A.1. We write σpv;Rq for
the strategy profile when the value profile is v and the realized set of real bidders is R.

2.2 Auction Environment

Throughout the paper, we focus on auction equilibria that are ex-post monotone and individ-
ually rational: The auction equilibrium pG, σq is monotone if, for all i, j, v�j, and vj ¡ v1j,�
ti pσpv;Bqq ¡ 0 ùñ ti pσpv;Bqq ¥ ti

�
σpv1j, v�j;Bq

��
, and is individually rational (IR)

if, for all v and i P B, xipσpv;Bqqvi � tipσpv;Bqq ¥ 0.

14This randomness plays little role in our analysis—we impose it only so that the overarching structure of
our model has bidders with ex-ante, symmetric, independent private values. See also Footnote 7.

15Here, we assume that the seller has 0 value for the item. Furthermore, when considering optimal auctions,
we naturally assume the seller only cares about raising revenue from real bidders.

16Unlike the assumption that N is fixed, this assumption is an economically substantive one: The only way
for shill bidders to manipulate the outcome of the auction is for shill bidders to take actions in the auction.
If the bidders instead knew who were the real bidders, shill bidders could have an incentive to appear as
real bidders in order to increase perceived competition. We do not explicitly consider the possibility that
real bidders may update about which bidders may be shills over the course of the auction because under our
shill-proofness conditions, shill bidders will never make nontrivial bids in equilibrium.

17In extensive form games, simultaneity is modeled as the information set of a player having multiple
elements.
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Because the value distribution is discrete, we must consider what to do if multiple bidders
have the same (highest) value. We assume throughout the paper the notion of orderliness
introduced by Akbarpour and Li (2020): there exists a fixed priority order—independent of
values—over which bidder wins an item if there is a tie.18

Definition 2.1. An auction equilibrium pG, σq is orderly if there exists a total ordering ▷
over pvi, iq with the following properties:

(i) for all v, i, j; vi ¡ vj ùñ pvi, iq▷ pvj, jq; and

(ii) for all i, j, if there exists m such that pvm, iq▷ pvm, jq, then for all k, pvk, iq▷ pvk, jq.

In order to give the optimal auction a well-behaved allocation rule, we suppose the value
distribution is regular (with bidders’ private values drawn i.i.d.). In Section 5, we relax the
regularity assumption. We take our definition of a discrete regular distribution from Elkind
(2007):

Definition 2.2. A distribution F is regular, if for all k, the virtual value φk � vk�pvk�1�

vkq1�F pv
kq

fpvkq
is non-decreasing.

With regular value distributions, a reserve price ρ� is optimal if and only if for all vk ¥ ρ�,
φk ¥ 0 and for all vk   ρ�, φk   0.19 The direct allocation rule in an orderly, optimal auction

is x̃�i pvq � 1
!
vi ¥ ρ�, pvi, iq � max▷ tpvj, jqujPB

)
, and in an orderly, efficient auction the

direct allocation rule is x̃Ei pvq � 1
!
pvi, iq � max▷ tpvj, jqujPB

)
.

2.3 Shill-Proofness

Next, we define our key shill-proofness desiderata. We are interested in auction equilibria
in which shill bidders do not shill. Formally, this corresponds to requiring that shill bidders
always act like real bidders who have value 0 for the item—since real bidders who have value
0 will never enter non-trivial bids in equilibrium, requiring shill bidders to have the same
actions in equilibrium in effect means that shilling does not occur.

Definition 2.3. An auction equilibrium pG, σq is weakly shill-proof if σ is invariant to
the realization of S, i.e., for all v and S, S 1 � ti : vi � 0u: σ pv;BzSq � σ pv;BzS 1q.

Note that Definition 2.3 is a statement about an equilibrium of an auction—it is possible
(although we have not found an example of this) that an auction may have both shill-proof
equilibria and non-shill-proof equilibria.

We can also strengthen our notion of shill-proofness from not shilling being an equilibrium
strategy to being an ex-post strategy:

18For example, if ties are broken lexicographically, then the auction is orderly.
19There are multiple optimal reserves in our setting, in general, due to the discrete nature of the distribu-

tion.
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Definition 2.4. An auction equilibrium pG, σq is strongly shill-proof if it is weakly shill-
proof and a ex-post strategy profile for shill bidders, i.e., for all σ1, S, and v�S,¸

jPR

tjpσp0, v�S;Rqq ¥
¸
jPR

tj pσ
1
S, σ�Sp0, v�S;Rqq .

Strong shill-proofness is obviously preferable to weak shill-proofness (all else equal), espe-
cially if there are concerns about a seller somehow acquiring information about real bidders’
valuations beyond what is encoded by the prior. As we’ll see, however, the design space of
weak shill-proof auctions is meaningfully larger than that of strong shill-proof auctions.

2.4 Revelation Principle

In order to make progress in understanding shill-proof auction formats, the following rev-
elation principle will be helpful: for every auction equilibrium pG, σq, there exists a direct
auction that can be summarized by a direct allocation rule x̃, a direct transfer rule t̃, a menu
rule µ, and a starting player ξ0.

20 The first input to the menu rule µ is a set V of valuation
profiles of the form V1�V2�� � ��VN with Vi � V for all i—intuitively, the valuation profiles
that are, in equilibrium, consistent with a particular history. The second input is a player ξ

who is to move next. The output of the rule is a collection
!�
Wℓ, ξ⃗ℓ

	)
ℓPt1,...,Lu

, where the

Wℓ’s are a partition of Vξ (from which player ξ will choose one, according to her valuation,

the equilibrium strategy σ determines the partition) and ξ⃗ℓ indicates the next player to move
should player ξ choose Wℓ. Under σ, the player ξ will always select the partition Wℓ such
that vξ P Wℓ. If ξ⃗ℓ � H, then the game ends should choice ℓ be selected by the bidder ξ.
For a typical iterative auction, one generally has ℓ � 2 with the two sets corresponding to
types above and below some value, respectively. Or, for a single-action auction, the Wℓ’s are
generally singletons, with one per type in Vi.

We show that for any implementable outcome px̃, t̃q of the auction, one can always find
a menu rule that is “informative”—the set of possible outcomes differs across partition
selections21—that also implements the same outcome. So, without loss of generality, we
restrict menu rules in this way and then describe an auction equilibrium by px̃, t̃, µ, ξ0q.
(See Lemma A.5 in the Appendix for a more formal treatment.) We refer to px̃, t̃, µ, ξ0q as
an auction when convenient. As is always the case with direct mechanisms, the auction
encompasses both the game form and the equilibrium, i.e., by appealing to the revelation
principle we have implicitly selected the equilibrium already.

Finally, as notation for later sections, for a set V � V1�V2�� � ��VN of valuation profiles,
define V i � max tvi : vi P Viu to be the maximum possible value of bidder i; V �i similarly
to be the maximum possible value of bidders j � i; and V � maxi

 
V i

(
. We define V i, V �i,

and V as the corresponding values for minima instead of maxima.

20This revelation principle is similar to those found in, for example, Ashlagi and Gonczarowski (2018);
Mackenzie (2020); Mackenzie and Zhou (2022); Pycia and Troyan (2023).

21This notion of informativeness is very similar to the pruned condition from Akbarpour and Li (2020).
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3 Dutch Auctions

Define the bidding rule22

b1i pv
mq � vm �

¸
k:vk vm

pvk�1 � vkq

�
F pvkq

�i�1 �
F pvk�1q

�N�i�1

pF pvmqqi�1 pF pvm�1qqN�i�1
.

Then, the Dutch auction is defined as the auction which begins by offering each bidder i
the item at b1i pv

Mq, and then if no bidder chooses to buy the item at that price, the item is
offered for b1i pv

M�1q and so on until either a bidder has chosen to buy the item or the price
to be offered drops below b1i pρ

�q, where ρ� denotes an optimal reserve price. We consider
only orderly auctions and therefore, at each price level, bidders are offered the opportunity
to buy the item in priority order. Formally:

Definition 3.1. The Dutch auction with reserve price ρ� is defined by the optimal
allocation rule x̃�, first-price transfer rule t̃1 � x̃� � b1, initial player p�, ξ0q � max▷ tp0, iqu,
and menu

µDpV, ξq �
!�
WL, ξ⃗L

	
,
�
WH, ξ⃗H

	)
,

where WH �
 
V ξ

(
,WL � Vξz

 
V ξ

(
, ξ⃗H � H, and

ξ⃗L �

#�
�, ξ̃

	
� max▷

 �
V i, i

�
: i � ξ

(
Di � ξ such that |Vi| ¡ 1 and V i ¥ ρ�

H otherwise
.

In the following subsections, we explore how the Dutch auction is uniquely suited to
preventing shill bidding.

3.1 Strongly Shill-Proof Auctions

In this subsection, we first show that all strongly shill-proof auctions must be pay-as-bid
and then show that under an assumption that real bidders observe all past actions, we can
precisely pin down the Dutch auction as the the only strongly shill-proof auction.

Lemma 3.2 (Pay-as-bid). If an optimal auction px̃�, t̃, µ, ξ0q is strongly shill-proof, then it
must be a pay-as-bid auction. Formally, for all ξ, vξ and v�ξ, v

1
�ξ,

x̃�ξ pvξ, v�ξq � x̃�ξ
�
vξ, v

1
�ξ

�
ùñ t̃ξ pvξ, v�ξq � t̃ξ

�
vξ, v

1
�ξ

�
.

Observe that Lemma 3.2 (and Theorem 3.4) holds even if we relax the assumption on
shill bidders’ information sets because an auction being strongly shill-proof means that shill
bidders want to report 0 even if they know the precise valuations of other bidders ex-ante.
To see why Lemma 3.2 is true, consider the case where R � tξu. Then, the shill bidders will
report whichever values maximize t̃ξ and so t̃ξ must be constant across all outcomes with
the same allocation.

To state our main result, we consider public auctions:

22See Lemma B.1 in the Appendix for proof that this is the correct form. The difference in transfer
function by bidder is because of tie-breaking.
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Definition 3.3. An auction equilibrium pG, σq is public if the information set at any history
is all previous actions taken. Formally, for any history h, Iphq � thu.

Public auctions are common in practice; from open air fish markets, to auctions on eBay,
participants often can see every action other bidders take before choosing what to do.23 Now
that we have restricted the possible information structure, we are in a position to present
our main result:

Theorem 3.4. A public and optimal auction is strongly shill-proof if and only if it is the
Dutch auction with reserve price ρ�.

The Dutch auction is strongly shill-proof because any shill bid immediately ends the
auction and in that case there would be no transfers from other bidders. To gain an intuition
on why uniqueness result holds, we note that the key property of the Dutch auction is that
any bid immediately ends the auction. Indeed, for all other auction formats, there exists
at least one history such that a bidder can indicate her value is strictly greater than 0
without the auction ending immediately. Such an action has two possible effects: (1) ex-
interim increasing the effective reserve price and (2) making it appear as if there is more
competition for the item, therefore causing less bid shading. The fact that the auction is
public and optimal implies that with a higher reserve price, the transfer from the winner must
be higher.24 We can then conclude that such an auction is not strongly shill-proof because
we can consider a valuation vector that generates such a history and have the bidder who
can indicate her value is greater than 0 be a shill bidder.

To further understand how the public assumption helps pin down a unique extensive
form, please refer to Example O.2 in the Online Appendix for a discussion of single-action,
first-price auctions and why they are weakly shill-proof, but not strongly shill-proof.

3.2 Weakly Shill-Proof and Efficient Auctions

To dive further into analyzing when a Dutch auction is needed, we now turn to discussing
efficient auctions. While the literature has primarily focused on optimal auctions, efficient
auctions are important to consider in many cases. One example is two-sided marketplaces,
where the auctioneer/market designer and the seller are different entities and may have
different objectives. The designer may be interested in allocating goods efficiently while
sellers are trying maximize revenue. Our next result shows that in order for an auction to
be weakly shill-proof and efficient robustly to the prior on the value distribution, part of
its game tree must be a Dutch auction. In particular, the auction must be a semi-Dutch
auction:

Definition 3.5. An efficient auction px̃E, t̃, µ, ξ0q is a semi-Dutch auction with cutoff
ρ� if for any v such that maxi tviu   ρ�:

23Non-examples of public auctions include the FCC spectrum auctions, where bidders typically only learn
information on other bidders’ actions in rounds (see Milgrom and Segal (2017) for more information).

24If the auction were not public, then real bidders’ beliefs might not change ex-interim and so their transfers
might not change either. For example, in a sealed first-price auction, a shill bidder’s actions have no effect
on the transfers of other bidders.
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(i) qV � tw : w   ρ�uN is reached and

(ii) µpV, ξq � µDpV, ξq for any player ξ and possible values V � qV where µD is the Dutch
auction menu rule from Definition 3.1.25

By robust, we mean that if the auction is not a semi-Dutch auction, then we can find
a value distribution such that the auction is not weakly shill-proof. More formally, if the
auction px̃, t̃, µ, ξ0q is parameterized by the optimal reserve ρ�, the number of atoms below
the reserve M and the number of atoms weakly above the reserve M ,26 the following result
holds:

Theorem 3.6. For every public and efficient auction that is not a semi-Dutch auction with
cutoff ρ�, there exists a regular value distribution with optimal reserve ρ� under which the
auction is not weakly shill-proof.

The key step in the proof of Theorem 3.6 resembles the proof of Theorem 3.4—in any non-
Dutch auction, shill bidders can ex-interim “raise the reserve price” by changing their actions.
However, given that we are interested in weak shill-proofness instead of strong shill-proofness,
we have to examine shill bidders’ incentives when we take expectations over real bidders’
values instead of conditioning directly on their values. Regularity implies that above ρ�, shill
bidders do not have an incentive to shill bid in auction formats such as the English auction
(see Section 1.1). However, below ρ�, we can always find a regular distribution such that the
ex-interim expected value of raising the reserve price is always positive. In the Appendix, we
construct the claimed sub-class of regular distributions (see Definition B.3). Informally, the
atoms of the value distribution have to be far enough apart so that raising the reserve price
a single “level” generates a large amount of additional revenue. So, below ρ�, the auction
must resemble the Dutch auction; the class of all such auctions is precisely all semi-Dutch
auctions with cutoff ρ�. In the Online Appendix (Example O.3), we provide an example
of an auction format that is weakly shill-proof for some value distributions but not others;
and the following example presents a real-world setting that roughly fits the premises of
Theorem 3.6 where a semi-Dutch auction (that is not a Dutch auction) is used:

Example 3.7. The Honolulu-Sydney fish auctions and Istanbul flower auctions documented
by Hafalir et al. (2023) blend elements of the Dutch and English auctions: The auction begins
at some intermediate price and if anyone bids, then the price ascends like in the English
auction. If no one bids, the price descends until someone bids like in the Dutch auction.27

25Technically, µDpV, ξq is defined only for optimal auctions; however, it is well-defined for efficient auctions

if we redefine ξ⃗L as

ξ⃗L �

#�
�, ξ̃

	
� max▷

 �
V i, i

�
: i � ξ

(
Di � ξ such that V i ¡ 0

H otherwise
. (1)

26M �M �M .
27Honolulu-Sydney auction, once someone bids, other bidders can counter-bid and raise the price once

more. However, in practice there is little counter-bidding. On the theoretical side, in an IPV setting, there
exists an equilibrium where there is no counter-bidding. Counter-bidding once the Dutch auction starts is
not allowed in the Istanbul flower auction.
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The Honolulu-Sydney auction plausibly fits the technical assumptions made in Theo-
rem 3.6: The auctions are public, as they take place in person and all bidders can see other
bidders’ actions. Market participants are interested in efficient outcomes because the goods
are perishable and there are positive disposal costs for the sellers. We do not mean to imply
that the Honolulu-Sydney auction was instituted precisely because it is shill-proof, but we
highlight it as further evidence that in markets where it is difficult to monitor shill bidding,
shill-proof mechanisms often arise.

As a final observation in this section, let us note that if instead of allowing the auction
format to treat bids above and below the optimal reserve differently, we instead required the
auction format to treat all bids identically, then the only public, efficient, and weakly shill-
proof auction is the Dutch auction.

Corollary 3.8. For any public and efficient auction that is not a Dutch auction, there exists
a regular value distribution under which the auction is not weakly shill-proof.

Proof. Observe that a semi-Dutch auction with cutoff ρ� � vM is simply a Dutch auction.
Then, apply Theorem 3.6 for a regular distribution with optimal reserve ρ� � vM .

4 Weakly Shill-Proof and Strategy-Proof Auctions

We have shown that the only optimal auction in which it is an ex-post strategy for shill
bidders not to shill (strong shill-proofness) and an equilibrium for real bidders is the Dutch
auction. We now investigate the reverse question: what optimal auctions have an ex-post
strategy for real bidders (ex-post incentive compatiblility) and an equilibrium for shill bidders
not to shill (weak shill-proofness)? Before we explore that question, let us formally define
ex-post incentive compatiblility:

Definition 4.1. An auction px̃, t̃, µ, ξ0q is ex-post incentive compatible if it is a ex-post
strategy for real bidders to report their values truthfully: for all i, v and v1i,

x̃pvqvi � t̃pvq ¥ x̃pv1i, v�iqvi � t̃pv
1
i, v�iq.

An optimal auction is ex-post incentive compatible if and only if has the second-price
transfer rule (Akbarpour and Li, 2020, Proposition 8):

t̃2i pvq � x̃�i pvq �max tρ�, second-highest value in tv1, . . . , vNuu .

Note that if a shill bidder knew the valuations of all other bidders, then shill bidding would
turn a second-price auction into a first price auction, which bounds the expected profit
for a shill bidder from shilling. So, in order to find a ex-post incentive compatible and
weakly shill-proof auction, we must find a menu rule that implements a second-price auction
where the expected gain from shill bidding is sufficiently small at shill bidders’ information
sets. As discussed in Section 1.1, for regular value distributions, one weakly shill-proof,
ex-post incentive compatible, and optimal auction is the English auction. We formalize the
English auction in our framework as follows:
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Definition 4.2. The English auction with reserve price ρ� is defined as the auction
with the optimal allocation rule x̃�, second-price transfer rule t̃2, initial player p�, ξ0q �
min▷ tp0, iquiPB, and menu

µEpV, ξq �
!�
WL, ξ⃗L

	
,
�
WH, ξ⃗H

	)
,

where WL � tv P Vξ : v   ρ�u Y
 
V ξ

(
,WH � VξzWL,

ξ⃗L � ξ⃗H �

#�
�, ξ̃

	
� min▷

 
pV i, iq : i � ξ, V i � vM , |Vi| ¡ 1

(
V �ξ � vM

H otherwise
.

Remark 4.3. The English auction with reserve price ρ� is weakly shill-proof, ex-post in-
centive compatible, and optimal. Depending on the information bidders have when taking
actions, it can also easily be made strategy-proof. See Section 6.2 for a discussion of how
our results hold in dominant strategies instead of ex-post strategies.

The English auction is not the only ex-post incentive compatible and weakly shill-proof
auction. While the English auction is used frequently, one drawback is that it is “slow”—
each bidder can be queried on their willingness-to-pay on the order of M times. Specifically,
let QEpF q �

�� k : vk ¥ ρ�
(���1 be the worst-case number of times a bidder must be queried.

To explore if there are weakly shill-proof and ex-post incentive compatible auctions that
require fewer rounds of communication, we introduce a natural “compression” of the English
auction. The ascending, screening auction, comprises the following two phases:

1. An English auction is run from ρ� to some vY .

2. If necessary, a second-price auction is then run among players who have not dropped
out before the value level of vY .

Definition 4.4. The ascending, screening auction with screen level vY is defined by the
optimal allocation rule x̃�, second-price transfer rule t̃2, initial player p�, ξ0q � min▷

 �
V i, i

�(
,

and menu

µpV, ξq �

$&%µ
EpV, ξq Di such that V i   vY and V i � vM!� 
vk
(
, ξ⃗

	)
kPtY,Y�1,...,Mu

otherwise
,

where
�
�, ξ⃗

	
� max

▷

 
p0, iq : |Vi| ¡ 1, V i � vY

(
and ξ⃗M � H.

This auction reduces the maximum number of times each bidder can be queried to
QAS,Y pF q �

�� k : ρ� ¤ vk ¤ vY
(���1. Because the transfer rule is t̃2, the ascending, screening

auction is ex-post incentive compatible and optimal.
We use the ascending, screening auction format to explore how fast a weakly shill-proof,

ex-post incentive compatible and optimal auction can be, as a function of the underlying value
distribution. Our next result shows that the ascending, screening auction can be weakly shill-
proof, ex-post incentive compatible, optimal, and take an arbitrarily small fraction of queries
as compared to the English auction depending on the value distribution:
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Theorem 4.5. For all ε ¡ 0, there exists a value distribution F and screen level vY such
that QAS,Y pF q{QEpF q   ε and the ascending, screening auction with screening level vY is
weakly shill-proof, ex-post incentive compatible, and optimal.

The ascending, screening auction is orderly and optimal by construction; and is ex-post
incentive compatiblebecause the English auction phase and the second-price phase both
induce the same (ex-post incentive compatible) allocation and transfer rule. The larger vY

is, the less that can be extracted in expectation from shill bidding and the more likely it
is that a shill bidder will win the item if she shill bids. We provide a sufficient minimum
bound on vY based on a few moments of a distribution (not its number of atoms), such
that for distributions with “thin-enough” right tails—in particular monotone hazard rate
distributions— the ascending, screening auction is weakly shill-proof (Lemma C.3). We can
then construct a sequence of distributions with increasing numbers of atoms and constant
vY to complete the proof.

5 Single-Action Auctions

Theorem 4.5 shows, by “compressing” an English auction, that there exists a weakly shill-
proof and ex-post incentive compatible auction in which, for some value distributions, bidders
take far fewer actions than in an English auction. We now show that such compression has its
limits, and more generally that there is no weakly shill-proof, ex-post incentive compatible,
and optimal auction in which each bidder takes a single action. This impossibility result
holds even after relaxing the assumptions that F is regular and after weakening our concept
of ex-post incentive compatiblility.

5.1 Set-Up

Let us begin by defining a single-action auction. An auction is considered single-action
when each bidder takes precisely one action in the auction (under all possible histories).
More formally, for any hN P Z, let hH   h1   . . . hN�1   hN be the sequence of histories to
reach hN . Then, for all i P B, there exists a unique n ¤ N such that i � P phnq. Without
loss, we label the bidders 1, . . . , N , in the order that they move and label the action taken
by bidder i as ai.

28

For exposition purposes, instead of tracking the information set Ii of a bidder i P R, we
assume that the information i has when taking an action is a signal si P Si. This signal

is generated via a deterministic function ψi :
��

j iAj

	
Ñ Si called an experiment.29

For notational convenience, we assume that ψi is surjective for all i. We can think of the
experiment as a garbling of the previous bidders’ actions—the experiment can pool together
multiple actions from previous bidders to a single signal and so a signal is not always perfectly
informative of previous actions. We can recover the public setting with a fully informative

28Note that this labeling need not be the same for different histories as the bidder ordering can be endoge-
nous to actions taken.

29Abusing notation, we also sometimes take ψi : Vi�1 Ñ Si, i.e., the experiment maps values to signals
instead of actions.
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experiment, i.e., let ψ � Id, the identity mapping. We can capture classical static game
settings via an uninformative experiment that always return the same output, ψ � H. We
use ψ�1

i psiq to denote the set of v�i that are possible from the perspective of bidder i given
its signal.

A revelation principle holds in this setting: for any single-action auction, we can define
the direct allocation and transfer rules as x̃pvq and t̃pvq, respectively, with the appropriate
incentive compatibility and individual rationality constraints for real bidders (Lemma D.1
in the Appendix), and appropriate IC constraints for weak and strong shill-proofness (Lem-
matta D.2 and D.3, respectively, in the Appendix).

5.2 Single-Action, Ex-Post Auctions Cannot Be Shill-Proof

To finish defining all the terms necessary for our main result of this section, we weaken
our notion of ex-post incentive compatiblility in the single-action auction setting to ex-post
incentive compatiblility for at least a single bidder:30

Definition 5.1. A single-action auction is mildly ex-post incentive compatible if for
the associated direct mechanism, there exists a real bidder i   N such that truthfulness is
an ex-post strategy conditional on the realization of her signal: there exists bidder i   N ,
such that for all i, vi, v

1
i, si and v�i, v

1
�i P ψ

�1
i psiq, x̃ipvq � vi � t̃ipvq ¥ x̃i pv

1q � vi � t̃i pv
1q .

Theorem 5.2. There exists no single-action, optimal auction that is mildly ex-post incentive
compatible and weakly shill-proof.

Proof Sketch. Consider any real bidder i   N . By weak shill-proofness, the transfer from
bidder i, conditional on winning (or losing) the auction, is invariant to the values of bidders
who take actions after her (Lemma D.4 in the Appendix). If this were not the case, then
if every bidder j ¡ i is a shill bidder, the shill bidders would report the values that would
maximize the transfer from the winning bidder. By mild ex-post incentive compatiblility,
the transfer from bidder i, conditional on winning the auction, is invariant to her value
(Lemma D.5 in the Appendix). This is because if there were multiple winning reports with
different transfer amounts, only the smallest transfer amount would make truthful reporting
of the value an ex-post strategy. So, in every single-action, optimal auction, the transfer
from the winning bidder i, can depend only on the values reported by bidders before i. But,
this means that if a bidder has positive utility for winning the item (as would be the case
if vi ¡ vj for all j   i), then she should report vM to maximize the probability of winning
(without changing the transfer paid upon winning). Thus, the auction must treat bidder i
as if she reported vM , which violates the allocation rule of an optimal auction.

30We exclude the last bidder who takes an action from our definition because a take-it-or-leave-it offer to
that bidder can be optimal and ex-post incentive compatible. Theorem 5.2 would still hold if we instead
defined mild ex-post incentive compatiblility to mean ex-post incentive compatible for at least two bidders.
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6 Discussion

6.1 Shill-Proofness vs. Credibility

As discussed in the review of literature, another notion of “cheating” by the auctioneer
is that of in-credibility introduced by Akbarpour and Li (2020). An auction is credible
if a revenue-maximizing auctioneer has no incentive to lie about what other players are
doing. That information environment differs from this paper because we assume that bidders
correctly (though perhaps not fully) perceive the actions of other players and where in the
game tree they are. In the Online Appendix, we formally define credibility in our setting
(Definition O.6) and prove the following implications:

Proposition 6.1. Suppose pG, σq is an optimal auction. If the auction is strongly shill-proof,
then it must be credible. If the auction is credible, then it must be weakly shill-proof.

We also define ψ-credibility for single-action auctions (Definition O.8) as a generalization
of credibility allowing for bidders to have exogenous signals (where ψ is our notation from
Section 5) about the actions of other bidders as well as additional communication from the
auctioneer. In a single-action auction, we define ψ � Id to mean that ψipaj iq � aj i,
i.e., that the signals reveal the actions of previous bidders. We define ψ � H to mean
the opposite, ψipaj iq � H. This is the classic static auction setting. We prove that the
implications of Proposition 6.1 still hold and give conditions under which credibility coincides
with strong and weak shill-proofness:

Proposition 6.2. Suppose pG, σq is a single-action, optimal auction. If the auction is
strongly shill-proof, then it must be ψ-credible. If it is pψ � Hq-credible, then it is strongly shill-
proof. If the auction is ψ-credible, then it must be weakly shill-proof. If it is weakly shill-proof,
then it is pψ � Idq-credible.

Proposition 6.2 implies that Theorem 5.2 is a generalization of the credible trilemma
(Akbarpour and Li, 2020, Theorem 1).

6.2 Dominant Strategies

This paper focuses on ex-post strategies. However, all our results can be extended to dom-
inant strategies as well. To extend Theorem 3.4 from an ex-post strategy not to shill to a
dominant strategy is straight-forward: shill bidding in the Dutch auction always leads to 0
revenue, which means it is a weakly dominated strategy, regardless of what other bidders do.
Further, since there exist no other auctions besides the Dutch auction that have an ex-post
strategy not to shill bid, there can exist no other auction with a dominant strategy not to
shill bid.

To extend Theorem 4.5 from an ex-post equilibrium to a dominant strategy equilibrium
for real bidders, some care must be taken in considering the information sets of different bid-
ders when they take actions. However, we can provide dominant-strategy equilibria versions
of the English and ascending, screening auctions by assuming bidders move simultaneously
each round of the English auction, as well in the second-price auction phase of the ascending,
screening auction. Theorem 5.2 holds if we were to instead consider dominant strategies for
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real bidders as dominant strategy incentive compatibility is a stronger condition than ex-post
incentive compatibility.
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A Model (Section 2) Appendix

Definition A.1. Consider any set of real bidders R and tuple pG, σq. We restrict the set of
potential deviations for shill bidders to

ΣS � tσ
1
S : @v�S, DvS such that pσ1S, σ�Spv�Sqq � σpvS, v�S;R � Bqu .

Then, the tuple pG, σq is an auction equilibrium if for all i P R and deviating strategies
σ1i,

Ev1
�i,R̃

�
ui

�
σ
�
vi, v

1
�i; R̃

		�
¥ Ev1

�i,R̃

�
ui

�
σ1i

�
vi, v

1
�i; R̃

	
, σ�i

�
vi, v

1
�i; R̃

		�
,

and for all σ1S P ΣS,

Ev1
�S

�
ui
�
σ
�
0, v1�S;R

���
¥ Ev1

�S

�
ui
�
σ1S

�
0, v1�S;R

�
, σ�S

�
0, v1�S;R

���
.

In Definition A.1, we are restricting shill bidders to acting “as-if” they are real bidders by
restricting their actions to those of real bidders with some valuation profile. This restriction
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allows us to move to a direct mechanism where shill-proofness is defined as it being an
equilibrium (ex-interim for weak shill-proofness, ex-post for strong shill-proofness) for all
shill bidders to report 0. Note that if we were to enlarge the set ΣS to be the set Σ̂S of all
strategy profiles, are main results would not change. For Theorems 3.4, 3.6 and 4.5, we are
focused on augmented direct games and in such games ΣS � Σ̂S. For Theorem 5.2, we know
that ΣS � Σ̂S and our impossibility result must still hold if the set of possible deviations by
shill bidders is larger; thus, the theorem still holds.

Lemma A.2. An optimal auction pG, σq is winner-paying: For all i and v,

xi pσpv;Bqq � 0 ùñ ti pσpv;Bqq � 0.

Proof. By the ex-post IR constraint, when xi pσpv;Bqq � 0, we have ti pσpv;Bqq ¤ 0. It then
follows from the optimality that ti pσpv;Bqq � 0. To see this, note that for bidder j � i,
equilibrium constraints on bidder j slacken when moving from ti   0 to ti � 0 and so her
play will remain the same. Meanwhile from bidder i, the transfer strictly increases moving
from ti   0 to ti � 0.

Before we state our revelation principle in this context, we recall (with slight modification
of notation) a definition and result from Akbarpour and Li (2020) that will be helpful in the
proof.

Definition A.3 (Akbarpour and Li (2020), Definition 2). A game equilibrium pG, σq is
pruned if, for any history h:

(i) There exists v such that h ¨ zpσpv;Bqq.

(ii) If h R Z, then |succphq| ¥ 2.

(iii) If h R Z, then for i � P phq, there exists vi,v
1
i, and v�i such that

(a) h   zpσpv;Bqq,

(b) h   zpσpv1i, v�i;Bqq, and

(c) px, tq pσpv;Bqq � px, tq pσpv1i, v�i;Bqq.

Lemma A.4 (Akbarpour and Li (2020), Proposition 1). If pG, σq is a game equilibrium,
then there exists a game equilibrium pG1, σ1q that is pruned and for all v, px, tq pσpv;Bqq �
px1, t1q pσ1pv;Bqq.

Lemma A.5 (Augmented Revelation Principle). For every game equilibrium pG, σq there
exists an auction px̃, t̃, µ, ξ0q that meets the following conditions:

(i) There exists a direct mechanism px̃, t̃q: for all v, x̃pvq � xpσpv;Bqq and t̃pvq �
tpσpv;Bqq.

(ii) There exists a choice menu rule µ that is a function of the potential values V � V1 �
� � � � VN and bidder ξ. This rule has an output of L ¥ 2 choices characterized as!�
Wℓ, ξ⃗ℓ

	)
ℓPt1,...,Lu

where:
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(a) tWℓuℓPL forms a partition of Vξ, ξ⃗ℓ P pB Y tHuq z tξu, and ξ⃗ � H signifies the game
has ended.

(b) For any ℓ such that ξ⃗ℓ � H, let V̂ ℓ � pV1, . . . , Vξ�1,Wℓ, Vξ�1, . . . , VNq. Then, for

any such ℓ, there exists vξℓ , v
1
ξℓ
P V̂ ℓ

ξℓ
, and v�ξℓ P V̂

ℓ
�ξℓ

such that px̃, t̃q pvξℓ , v�ξℓq �

px̃, t̃q
�
v1ξℓ , v�ξℓ

�
. If vξ P Wℓ, then the next player in the game is ξ⃗ℓ and the menu

presented to her is µpV̂ ℓ, ξ⃗ℓq.

(c) If ℓ is such that ξ⃗ℓ � H, then for all v, v1 P V̂ℓ,
�
x̃, t̃

�
pvq �

�
x̃, t̃

�
pv1q .

(d) The first player to take an action is ξ0, who is presented the menu µpVN , ξ0q.

Proof. To prove Condition i, we simply construct px̃, t̃q by iterating over all possible v and
defining px̃, t̃q as the outcome of σpv;Bq in G.

To prove Condition ii, we first observe that by Definition A.1, shill bidders must act
“as-if” they were real bidders and that we have restricted to pure strategies. Thus, we can

always label actions as classes
�
Wℓ, ξ⃗ℓ

	
of a partition of the remaining possible values for the

current player ξ and satisfy Condition ii.iia. Condition ii.iic follows from the fact that G is
well defined (with each terminal history associated with a single outcome). Condition ii.iid is
simply mapping the first player in G to ξ0 and the auctioneer has no information on bidders’
values yet. The fact that L ¥ 2 is equivalent to Conditions i and ii of Definition A.3, and
Condition iii of Definition A.3 is equivalent to Condition ii.iib here. We can then apply
Lemma A.4 to find a game that satisfies these properties.

B Dutch Auctions (Section 3) Appendix

B.1 Strongly Shill-Proof Auctions (Section 3.1) Appendix

Proof of Lemma 3.2.

Towards contradiction, suppose there exists a strongly shill-proof auction px̃�, t̃, µ, ξ0q, player
ξ, and values vξ, v�ξ, v

1
�ξ such that x̃ξpvq � x̃ξpvξ, v

1
ξq, but t̃ξpvq � t̃ξpvξ, v

1
ξq. WLOG, suppose

t̃ξpvq ¡ t̃ξpvξ, v
1
ξq. Now by Lemma A.2, ξ can only have two different transfers if that player

wins the item under the allocation. Then, take R � tξu and by monotonicity, t̃ξpvq ¡
t̃ξpvξ, v

1
ξq ¥ t̃pv1ξ; 0q and thus shilling increases revenue and the auction is not strongly shill-

proof.
Given our auction px̃, t̃, µ, ξ0q, we define Xipvi;V q and Tipvi;V q to be the ex-interim

quantity and transfer rules, respectively, when bidder i has value vi and the set of potential
values for all bidders is V � V1 � � � � � VN .

Lemma B.1. For every optimal, weakly shill-proof auction px̃�, t̃, µ, ξ0q, the ex-interim trans-
fer rule for bidder i is

Tipvi;V q � Xipvi;V qvi �
¸

m:vjm vi

�
Xipv

jm ;V q � pvjm�1 � vjmq
�
,

where tvjmum are the ordered atoms of Vi.
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Proof. To prove that T has the claimed form, we will consider a specific non-truthful report-
ing: if a bidder has value vm, she commits to mis-reporting (selecting partitions) vm

1

for the
rest of the game. We now follow the proof of Theorem 1 of Elkind (2007). Since our direct
mechanism is an equilibrium for real bidders, we must have

Xipv
jm ;V qvjm � Tipv

jm ;V q ¥ Xipv
jm�1 ;V qvjm � Tipv

jm�1 ;V q, and

Xipv
jm�1 ;V qvjm�1 � Tipv

jm�1 ;V q ¥ Xipv
jm ;V qvjm�1 � Tipv

jm ;V q.

Defining Ui to be the ex-interim utility for bidder i, the preceding expressions become:

Uipv
jm ;V q ¥ Uipv

jm�1 ;V q � pvjm � vjm�1qXipv
jm�1 ;V q, and

Uipv
jm�1 ;V q ¥ Uipv

jm ;V q � pvjm � vjm�1qXipv
jm ;V q.

Thus, pvjm�vjm�1qXipv
jm�1 ;V q ¤ Uipv

jm ;V q�Uipv
jm�1 ;V q ¤ pvjm�vjm�1qXipv

jm ;V q. Hence,
any IC mechanism is such that

Uipv
jm ;V q � Uipv

j1 ;V q �
m̧

k�2

pvjm � vjm�1qX̃ipv
jm ;V q

where X̃ipv
jm ;V q P

�
Xipv

jm�1 ;V q, Xipv
jm ;V q

�
.

Therefore, we have that

Tipv
jm ;V q � Xipv

jm ;V qvjm � Uipv
j1 ;V q �

m̧

k�2

pvjm � vjm�1qX̃ipv
jm ;V q. (2)

By the ex-post IR condition, we have Uipv
j1 ;V q ¥ 0 for all V . So, solving for the optimal

transfer rule from Equation (2),

T �
i pv

jm ;V q � max
Ui,X̃

�
Xipv

jm ;V qvjm � Uipv
j1 ;V q �

m̧

k�2

pvjm � vjm�1qX̃ipv
jm ;V q

�
such that Uipv

j1 ;V q ¥ 0 and X̃ipv
jm ;V q P

�
Xipv

jm�1 ;V q, Xipv
jm ;V q

�
.

The solution to this maximization is Uipv
j1 ;V q � 0, X̃ipv

jm ;V q � Xipv
jm�1 ;V q. Thus, Equa-

tion (2) becomes

Tipvi;V q � Xipvi;V qvi �
¸

m:vjm vi

�
Xipv

jm ;V q � pvjm�1 � vjmq
�
.

For any value choice pW, �q P µp�, �q, let us defineW � minwPW twu andW � maxwPW twu,
respectively.

Lemma B.2 (Extended Pay-as-Bid). Consider a strongly shill-proof, public, optimal auction

px̃�, t̃, µ, ξ0q. Fix V, ξ and consider any pW, ξ⃗q P µpV, ξq. If there exists v, v1 P V such that
vξ, v

1
ξ P W and µpV, ξq is the last action ξ takes, then,

x̃�ξ pvq � x̃�ξ pv
1q � 1 ùñ t̃ξpvq � t̃ξpv

1q �
TξpW ;V q

XξpW ;V q
,

i.e., transfers are constant conditional on allocation and are pinned down by the ex-interim
outcome functions from the lowest type in the partition.
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Proof. Since an auction cannot distinguish between values in the same choice set, we can
apply Lemma 3.2 to conclude that if µpV, ξq is the last action ξ takes, then t̃pvq � t̃pv1q. To
conclude the proof, we note that ξ wins no matter what her value is in W and then apply
Lemma A.2 to observe that TξpW ;V q � t̃ξpvq �XξpW ;V q.

Proof of Theorem 3.4.

We first show that the Dutch auction is a well-defined, i.e., that the stopping rule allows for
the auction to be orderly and optimal.31 We then show that it is strongly shill-proof. Finally,
we show that there are no other public, strongly shill-proof, orderly, optimal auctions.

The Dutch Auction is Orderly, Optimal, and Strongly Shill-Proof. The
Dutch auction quantity and transfer rule are orderly and optimal (as well as ex-post IR

and monotone). Indeed, by construction, the next player ξ⃗ is always the player with the
potentially highest value (including for tie-breaking). So, if that player indicates that she is
of the highest possible type, the outcome (allocation and transfer) is fully determined and
the auction ends. The auction ends once there are no players who could have values weakly
greater than ρ�.

We now prove that the Dutch auction is strongly shill-proof. Towards contradiction,
suppose not. So, there must exist some S, ξ P S, and V such that

 
V ξ

(
is selected from the

menu µpV, ξq. But by construction, this means that the auction immediately ends and the
good is allocated to the shill bidder who misreported. By Lemma A.2, the revenue from this
deviation is 0, which must be weakly less than any other possible transfer.

Uniqueness. Towards contradiction, suppose there exists a menu rule µ̃ � µD that
is associated with a public, strongly shill-proof, orderly, optimal auction. Therefore, there
exists V and ξ such that µ̃pV, ξq � µDpV, ξq. Without loss, we will suppose that V is the first
time in the game tree that µ̃ differs from µD. Formally, for all V̂ � V , µ̃pV, ξq � µDpV, ξq.
We now proceed in cases.

Case 1 (Different Next Player Choice). Suppose µ̃pV, ξq �
!�
WL,

˜⃗
ξL

	
,
�
WH,

˜⃗
ξH

	)
, where

˜⃗
ξL � ξ⃗L or

˜⃗
ξH � ξ⃗H. If

˜⃗
ξL � ξ⃗L, then

˜⃗
ξH � ξ⃗H because the outcome is fully resolved once

a bidder selects the high partition. So, we need only consider the case where
˜⃗
ξL � ξ⃗L. By

Definition 2.1,
˜⃗
ξH � H (even if the ξ chooses

 
V P

(
). WLOG, we can assume that bidder

b1 is called first, followed by bidder b2 with higher priority than b1, (potentially) followed
by the remaining bidders. There must exist such a b2 because otherwise the auction calls
players in the same order as the Dutch auction, which we assumed was not the case. Let
R � Bz tb1u, and for some m, vb2 � vm and vi � vm�2 for all bidders i R tb1, b2u. Taking the
expression from Lemma B.1 and dividing both sides by Xb2 , we get

Tb2pv
m;V q

Xb2pv
m;V q

� vm �
¸

k:vjk vm

Xb2 pv
jk ;V q

Xb2 pv
m;V q

� pvjk�1 � vjkq   vm.

(Note that there must be at least one such k in the summation because otherwise Vb2 � tv
mu

and b2 would not take an action.)

31The auction is public by definition.

24



The last choice b2 makes is to select a partitionW such thatW ¥ vm�2. We can therefore

apply Lemma B.2 to conclude that the transfer if b1 reports 0 must be
Tb2 pW ;V q

Xb2
pW ;V q

¤
Tb2 pv

m;V q

Xb2
pvm;V q

 

vm. If bidder b1 instead reports vm, then bidder b2 will win and the revenue will be vm and
so the auction will not be strongly shill-proof. This argument also applies if only the first
n   N bidders are chosen in order because of the orderliness assumption.

Case 2 (Different Partitions). Suppose there exists pW, �q P µ̃pV, ξq such that W R
tWL,WHu. There are now three sub-cases: W P rρ�, V �ξq, W � V �ξ, and W P p0, ρ�q.
We need not consider the case where W � 0 because in that case either we can consider
some other choice W 1 R tWL,WHu or W � Vξ which would violate Lemma A.5. We need
not consider W ¡ V �ξ because V is the first time µ̃ differs from µD and for all V , ξ, and
pW̃ , �q P µDpV, ξq, it is the case that W̃ ¤ V �ξ.

Case 2a (W P rρ�, V �ξq). In this sub-case, there exists m� such that ρ� ¤ W ℓ ¤ vm
�

 
V �ξ. Since V is the first time that µ̃ differs from µD, we can suppose there exists i is such
that pvm

�

, ξq▷ pρ�, iq because otherwise the outcome would already be resolved or the player
rotation would be the only difference (Case 1). Then, suppose bidder i is such that i P R
and vi ¥ vm

��1. Take bidder ξ P S to shill vm
�

; and for k R ti, ξu, take vk � V k   vm
�

.
Therefore, by Lemma B.1, observe that for the last action i takes, her ex-interim transfer
must be higher when shill ξ reports vm

�

than when she reports 0. Thus by Lemma B.2,
when vm

�

  V �ξ, there exists a valuation vector v such that a shill bidder would want to
deviate away from reporting 0—and therefore such an auction is not strongly shill-proof.

Case 2b (W � V �ξ). In this sub-case, we know ρ� ¤ W ℓ � V �ξ. Since V has been
generated via a Dutch auction so far, ξ is such that for all j � ξ, pV j, jq ▷ pV j, ξq, i.e., the
current player has the lowest tie-breaking priority. Letting j P R and vj � V �ξ, take bidder
ξ P S to report V �ξ; and for all k R tj, ξu, take vk � V k   V �ξ. As noted, pV j, jq▷ pV j, ξq
and so bidder j is allocated the item and not shill bidder ξ. Therefore, by the same argument
as Case 2a, shill bidding will increase revenue.

Case 2c (W P p0, ρ�q). By Condition ii.iib of Lemma A.5, we can observe that W ¥ ρ�.
In particular, there exists j and vj, v

1
j P Vj such that pvj, jq ▷ pρ�, ξq and pW, ξq ▷ pv1j, jq.

The second inequality is implied by Lemma 3.2 because there must be some chance that ξ
could win the auction in order to affect outcomes. If any bidder is ever offered a choice with
W ¥ ρ�, then the previous cases imply that a shill bidder can profitably deviate and so we
only have to consider the instances where no such choices are offered. Now, suppose R � tju.
Suppose all shill bidders play the strategy of selecting the partition W̃ such that 0   W̃   ρ�

if such a choice is available. Let the final move that j takes to be W 0,j,last,W S,j,last under
the shill bidders’ strategy of selecting 0 and not, respectively. Similarly, define V 0,last, V S,last

as the possible values and t̃0j , t̃
S
j as the transfers under these respective strategies. Observe

that it is without loss to assume that vω � W 0,j,last ¤ W S,j,last because in the latter case the
shill bidders are always acting as if they have higher values than in the former case. Next,

let pm,ci � P
�
pvm, jq▷ pvi, iq | V

c,last
i

�
and define ζi,m �

pm,0
i pω,S

i

pm,S
i pω,0

i

. Observe that for all i � j

and m ¤ ω, ζi,m ¥ 1 with at least one strict inequality because V
S,last

i ¥ V
0,last

i for all i with
at least one strict inequality. So, by Lemmatta B.1 and B.2,32

32We may assume that the possible values for j are sequential above the reserve otherwise we could consider
j as a shill bidder for some other bidder instead by the cases above.
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t̃Sj � t̃
0
j ¥

Tξpv
ω;V S,lastq

Xξpvω;V S,lastq
�
Tξpv

ω;V 0,lastq

Xξpvω;V 0,lastq

�
¸

k:vkPrρ�,vωq

�
pvk�1 � vkq

¹
i�j

pk,0i
pω,0i

�
�

¸
k:vkPrρ�,vωq

�
pvk�1 � vkq

¹
i�j

pk,Si
pω,Si

�

�
1±

i�j p
ω,0
i pω,Si

�

� ¸
k:vkPrρ�,vωq

pvk�1 � vkq �

�¹
i�j

pk,Si pω,0i pζi,k � 1q

��
¡ 0.

Thus, we have described a profitable shill bidding strategy in this sub-case.

B.2 Weakly Shill-Proof and Efficient Auctions (Section 3.2) Ap-
pendix

In order to build towards a proof Theorem 3.6, we will prove that for a certain class of value
distributions, every weakly shill-proof and efficient auction must have part of its game tree
be a Dutch auction. Formally, we assume that the value distribution is sparse:

Definition B.3. A regular distribution F is sparse if for all k   ρ�,

vk � pvk�1 � vkq
fpvk�1q

fpvkq
  0. (3)

A distribution is sparse if the atoms are sufficiently far apart. Sparsity can also be
a reasonable assumption if the auctioneer has preferences for the auction to be completed
quickly, or otherwise finds it costly to distinguish between values that are close to each other.

Lemma B.4. Consider an efficient auction and suppose F is regular and sparse. Let R, V
such that Vi �

 
v : v P rV i, V is

(
for all i P R, and consider pW, jq such that W   ρ�, j R R

and for all i P R, pV i, iq▷ pW, jq. Then, for all γ   W ,

E

�¸
iPR

t̃ipvq | V � pV�j, tγuq

�
  E

�¸
iPR

t̃ipvq | V � pV�j, tW uq

�
.

Thus, the following shilling strategy is profitable compared to always reporting 0: if there
exists pV, ξ,W q such that pW, �q P µpV, ξq and W P p0, ρ�q, then select W . Otherwise, select
the partition containing 0.

Proof. Consider any i P R and V and let C �
�°

vkPVi
fpvkq

��1
. Then, applying Equa-

26



tion (2),

E
�
t̃ipvq | V

�
� Uipv

j1 ;V q � E rTipvi;V qs � Uipv
j1 ;V q � C

¸
m

fpvjmqTipv
jm ;V q

� C
¸

m:vjmPVi

fpvjmq

�
Xipv

jm ;V qvjm �
¸
k m

�
X̃k
i pV q � pv

jk�1 � vjkq
��

� C

� ¸
m:vjmPVi

fpvjmqXipv
jm ;V qvjm �

¸
m:vjmPVi

¸
k m

fpvjmq
�
X̃k
i pV q � pv

jk�1 � vjkq
��

� C
¸

m:vjmPVi

�
vjmXipv

jm ;V q � pvjm�1 � vjmq
F pV iq � F pv

jmq

fpvjmq
X̃m
i pV q

�
fpvjmq.

Applying the definition of the efficient allocation rule x̃E, we know that for pvm, iq ▷ pγ, jq
and pvm, iq▷ pγ1, jq, we can define Xipv

m;V�jq � Xipv
m;V�j, tγuq � Xipv

m;V�j, tγ
1uq. Note

that W ¤ mini
 
V i

(
by assumption and therefore, for W P pγ, ρ�q,

E
�
t̃ipvq | V � pV�j, tγuq

�
� E

�
t̃ipvq | V � pV�j, tW uq

�
� C

¸
m:γ¤vjm W

�
vjmXipv

jm ;V q � pvjm�1 � vjmq
F pV iq � F pv

jmq

fpvjmq
X̃m
i pV q

�
fpvjmq

¤ C
¸

m:γ¤vjm W

�
vjm � pvjm�1 � vjmq

fpvjm�1q

fpvjmq

�
fpvjmqXipv

jm ;V�jq   0

where the final inequality comes from sparsity. And so,

E

�¸
iPR

t̃ipvq | V � pV�j, tγuq

�
  E

�¸
iPR

t̃ipvq | V � pV�j, tW uq

�
,

as claimed in the lemma. Thus, committing to misreport asW is strictly beneficial compared
to any strategy that can only report γ   W .

Lemma B.5. If F is regular and sparse, then every public, weakly shill-proof, and efficient
auction is a semi-Dutch auction with cutoff ρ�.

Proof. Suppose F is regular and sparse. Consider an arbitrary weakly shill-proof and efficient
auction, px̃E, t̃, µ, ξ0q, and consider any v such that maxi tviu   ρ�.

Proof of (i). First, we prove that, for any player ξ and set of possible values V such

that there exists pW, �q P µpV, ξq where 0   W   ρ�, it is the case that V � qV . Towards

contradiction, suppose that there exists a pξ, V,W q such that V � qV , pW, �q P µpV, ξq, and
W P p0, ρ�q. Let us suppose ξ P S.

Let us first prove it is without loss to assume pξ, V,W q is such that for all i, V i � 0
or V i ¥ ρ�. If there exists pξ, V,W q with i such that V i P p0, ρ

�q, let us label that set as
V K and let V 0 � V 1 � . . . � V K be the sequence of on-path possible value sets to V K .
Let the players called along the path be ξ0, ξ1, . . . , ξK and the value partition selected by
player k to be W k. Note that V 0 � VN is such that for all i, Ṽ i � 0 or Ṽ i ¥ ρ�. So, the
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set K �
 
k   K : W k P p0, ρ�q

(
� H and therefore k� � minkPK tku is well-defined. If k

is such that W k R p0, ρ�q and for all i, V k
i R p0, ρ

�q, then it must be the case that for all
i, V k�1

i R p0, ρ�q. Since k� is the first time in the game that a player selects a partition
with W k P p0, ρ�q, it must be the case that for all i, V k

i � 0 or Ṽ i ¥ ρ�. Since V k� � V K ,

V k� � qV . Thus, pξk
�

, V k� ,W kq is such that V k� � qV ,
�
W k� , �

�
P µ

�
V k� , ξk

�
�
,W k� P p0, ρ�q,

and for all i, V k�

i � 0 or V k�

i ¥ ρ�.
So, in order to have W P p0, ρ�q, it must be the case that 0 P Vξ. Thus it is possible

for ξ to be a shill bidder while having so far only selected partitions that contain 0. Let
S �

 
i : V i   ρ�

(
Y tξu. By assumption that V � qV , there must exist i such that V i ¥ ρ�

and thus we can suppose that R � H. By assumption that W P p0, ρ�q, we can suppose
that R is such that for all i P R, V i ¡ W . By Lemma B.4, this would contradict the
hypothesis that the auction is weakly shill-proof and so we must have V � qV when there
exists pW, �q P µpV, ξq such that 0   W   ρ�.

Proof of (ii). We now prove that for any player ξ and set of possible values V � qV , it
is the case that µpV, ξq � µDpV, ξq. Consider any option pW, �q P µ pV, ξq. Observe that by
Lemma B.4, it is not the case that 0   W   V �ξ. So, W ¥ V �ξ. Since this is the case for
all V , it must therefore be true that W � V ξ. This is because if V ξ ¡ V ¥ V �ξ, then there

must have existed some earlier menu
�
W̃ , �

	
P µ

�
Ṽ , ξ̃

	
for which W̃   Ṽ ξ̃.

So far we have proven that µpV, ξq �
!�
WL,

˜⃗
ξL

	
,
�
WH,

˜⃗
ξH

	)
. To complete the proof, we

have to prove that
˜⃗
ξL � ξ⃗L,

˜⃗
ξH � ξ⃗H. Towards contradiction, suppose

˜⃗
ξL � ξ⃗L or

˜⃗
ξH � ξ⃗H.

If
˜⃗
ξH � ξ⃗H, then, by Lemma A.5, Condition (ii), there exists i such that V i � V ξ,

�
V i, i

�
▷�

V ξ, ξ
�
. We can let R � tiu and then apply Lemma B.4 to contradict the hypothesis that

the auction is weakly shill-proof. If
˜⃗
ξL � ξ⃗L, then, as argued in the proof of Theorem 3.4, the

menu presented to
˜⃗
ξL must not have the auction end immediately, no matter what partition

˜⃗
ξL selects. Thus, our previous argument for the case where

˜⃗
ξH � ξ⃗H applies, and we can

conclude that µpV, ξq � µDpV, ξq.

Proof of Theorem 3.6

The statement follows as a corollary of Lemma B.5. Consider any optimal reserve ρ�, M
atoms below the optimal reserve, and M atoms above the optimal reserve. We construct
a sparse (and regular) distribution F̃ with optimal reserve ρ�, M atoms below the optimal
reserve, and M atoms above the optimal reserve. To begin, let δ such that Mδ ¤ ρ� and
pM � 1qδ ¡ ρ�. Then for all k ¤ M , let vk�1 � vk � δ and f̃pvkq � e�λpk�2qδ � e�λpk�1qδ.
Note that

φ̃k � vk � pvk�1 � vkq
1� F̃ pvkq

f̃pvkq
� pk � 1qδ � δ

e�λpk�1qδ

e�λpk�2qδ � e�λpk�1qδ
,

and so φ̃k�1 � φ̃k � kδ � pk � 1qδ � δ ¡ 0; hence, F̃ satisfies the regularity condition for
k ¤M .

In order for ρ� to be an optimal reserve of F̃ , it must be the case that for k� such that
φ̃k

�

¥ 0 and φ̃k
��1   0, it is also the case that ρ� P ppk��1qδ, k�δs. Such a k� must be equal
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to rǩs, where ǩδ � δ
eλδ�1

� 0. Thus, M � 1 � k� � r 1
eλδ�1

s.

In order for F̃ to be sparse, it must satisfy Equation (3), which here simplifies to

pk � 1qδ �

�
1�

e�λpk�2qδ � e�λpk�1qδ

e�λpk�1qδ � e�λpkqδ



  kδ ùñ

e2λδ � 1

eλδ � 1
 

k

k � 1
.

So, F̃ is sparse if

e2λδ  
2� peλδ � 1qp2pk� � ǩq � 1q

1� ppk� � ǩq � 1qpeλδ � 1q
. (4)

Selecting λ such that M � 1 � ǩ � k�, Equation (4) is satisfied.

Finally, to finish constructing F̃ , we simply select atoms vM�2, . . . , vM�M and respective
probability weights to satisfy

φ̃k is non-decreasing and

M�M̧

k�M�2

f̃pvkq � e�λpM�1qδ.

This system of constraints has at most M constraints and 2pM � 1q free variables, so the
system can be satisfied. Thus, we have constructed a regular and sparse F̃ that has the
required values of ρ�,M , and M . Then, we can apply Lemma B.5 to conclude the proof.

C Weakly Shill-Proof and Strategy-Proof Auctions (Sec-

tion 4) Appendix

Definition C.1. Let F be a discrete distribution with ordered atoms 0 � v1   . . .  
vM and F be a continuous distribution with p.d.f. f . If YF � F , then F is a discrete
approximation of F when YF � F is defined as

YF �

$'&'%
v1 YF ¤ v1

vk YF P pv
k�1, vks

vM YF ¡ vM�1

. (5)

For such a distribution F , let ∆ � maxk
 
vk � vk�1

(
. As convention, let F�1 be the left

pseudo-inverse: F�1pxq � max
 
vk : x ¥ F pvkq

(
.

Definition C.2. Let F be a discrete approximation of F . The distribution F is amonotone

hazard rate (MHR) distribution if fpwkq
1�F pwkq

is monotonically increasing in k and hpxq �
f pxq

1�F pxq is monotonically increasing in x.

Lemma C.3. If the value distribution is a discrete MHR distribution F , then for all

vY ¥ F�1

�
F pρ�q � max

1¤n N

#�
max

"
1�

ρ�

ρ� � 2∆

�
fpρ�q

1� F pρ�q


n

, 0

*
1{n
+�

, (6)

the ascending, screening auction with screening level vY is a weakly shill-proof, ex-post in-
centive compatible, and optimal auction.
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Proof of Lemma C.3.

The Ascending, Screening Auction is Orderly and Optimal. We first prove that
the auction is well-defined, orderly, and optimal. The transfer and allocation function are
orderly and optimal, so we only have to show that the menu rule can induce this outcome
function. Let us examine the English auction phase first. The auction ends if and only if
V   vM . When that occurs, the auction has determined vi for all i given vi ¥ ρ�. Thus, the
outcome is fully determined. In the second-price auction phase, each value weakly greater
than vY is determined precisely (and there are at least two players with values weakly greater
than vY ) and so the outcome rule is determined.

The Ascending, Screening Auction is Ex-Post Incentive Compatible. Observe
that the definition of ex-post incentive compatiblility (Definition 4.1) is a function solely of
the direct mechanism px̃, t̃q and not of the menu rule µ. Both the English auction phase and
the second-price auction use the same transfer function t̃2. The entire auction has the optimal
allocation rule x̃� and so the ascending, screening auction is ex-post incentive compatible.

The Ascending, Screening Auction is Weakly Shill-Proof. By assumption that
the screen level is at least ρ�, any potential shill bidder will be asked to play at least once
in the English auction before being able to play in the second-price auction. If the optimal
shill bid is 0 in the first round of the English auction, then the auction is weakly shill-proof
because once a bidder reports 0, she “drops out” and does not take another action.

Observe that given the form of the transfer rule, the maximum amount that a bidder i
with value vi would have to pay is vi. Thus, the maximum possible gain in revenue from a shill
bidder deviating is at most the difference between the first and second moment of v. Next,
note that MHR distributions are regular. Regularity implies that if a shill bidder reports a
non-zero value in the English auction stage and the auction concludes before reaching the
second-price stage, the expected gain must be weakly less than 0. So, when considering
the expected gain of misreporting, we can think of the expected gain from manipulating
outcomes in the English auction component as at most 0 and can focus on manipulating
outcomes in the second-price stage. Therefore, the total gains from misreporting as a shill
bidder must be bounded above by the probability that a shill bidder is able to manipulate
the outcome of the second-price auction multiplied by the expected difference between the
first and second moments of the value distribution conditional on reaching the second-price
auction stage.

Let F be the continuous distribution for which F is a discrete approximation. For an
exponential distribution with rate λ, the expected difference between the first and second
moments of T independent draws is 1

λ
. The exponential distribution, with its constant hazard

rate, has the thickest right tail of any MHR distribution and so has the largest expected
difference between its first and second moments (see proof of Theorem 5.1 in Bahrani et al.
(2024)). In particular, since we are only interested in value draws above the reserve ρ�F and
F has a non-decreasing hazard rate, we can take the rate λ � hpρ�F q �

1
ρ�F

and conclude

that the maximum difference between the first and second moments of F must be bounded
above by ρ�F . Recall that hpρ�F q �

1
ρ�F

because F is regular and ρ�F is the optimal reserve

of F . Examining Equation (5), we can see that our discrete approximation pools draws
from a continuous distribution upwards to atoms and so, if the absolute difference between
two samples of the continuous distribution is κ, the absolute difference between the discrete
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approximation samples would be at most κ � ∆. Thus, the maximum possible expected
difference between the first and second moments of F conditional on being above the reserve
is at most ρ�F �∆. Further note that this also implies that

��ρ� � ρ�F �� ¤ ∆.
Suppose bidder i is a shill bidder and it is the first time she is taking an action. Then,

under the rules of the auction, she has not indicated that her value is greater than ρ� yet.
For any real bidder j � i, there are two cases: either bidder j has indicated her value is
weakly greater than ρ�

�
P
�
vj   vY

�
� F pvY q � F pρ�q

�
or she has not yet taken an action�

P
�
vj   vY

�
� F pvY q

�
. So, if K ¤ N real bidders have not dropped out yet (i.e., indicated

that their value is less than ρ�), then the probability that the auction would continue to the

second-price auction is at most 1�
�
F
�
vY

�
� F pρ�q

�K
. Therefore, the maximum expected

gain for a shill bidder from misreporting in her first action of the English auction phase when
K bidders have not dropped is at most�

1�
�
F
�
vY

�
� F pρ�q

�K	 �
ρ�F �∆

�
. (7)

We now turn to bounding the loss from reporting a non-zero value as a shill bidder. If
shill bidder i misreports her value as vm at some point in the English auction phase and
then she wins the item without taking another action, then the transfer the seller would have
received had i not misreported is at least max tρ�, vm�1u ¥ ρ�, assuming at least one real
bidder has value weakly above the reserve. To bound the probability that a real bidder j
would have won the item if not for shill bidder i’s misreport, we can consider the probability
that bidder j has indicated her value is at least V j ¥ ρ�. By Definition C.2, the hazard rate
of F is non-decreasing. So,

P rvj ¤ vms ¥

¸
tk:V j¤v

k vmu

fpvkq

1� F pV jq
¥

fpV jq

1� F pV jq
¥

fpρ�q

1� F pρ�q
.

Combining the preceding inequality with our hypothesis that K bidders have not dropped
out yet, the expected loss for a shill bidder of misreporting is at least

ρ� �

�
fpρ�q

1� F pρ�q


K

. (8)

We conclude the proof by showing that vY satisfying Equation (6) implies that the
expected revenue loss from misreporting as a shill is weakly larger than the expected gain.
Beginning with Equation (6), we can see that for all K   N ,

vY ¥ F�1

�
F pρ�q � max

1¤n N

#�
max

"
1�

ρ�

ρ� � 2∆

�
fpρ�q

1� F pρ�q


n

, 0

*
1{n
+�

¥ F�1

��F pρ�q ��
max

#
1�

ρ�

ρ� � 2∆

�
fpρ�q

1� F pρ�q


K

, 0

+�1{K
�


¥ F�1

��F pρ�q ��
max

#
1�

ρ�

ρ�F �∆

�
fpρ�q

1� F pρ�q


K

, 0

+�1{K
�
.
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This implies that

ρ� �

�
fpρ�q

1� F pρ�q


K

¥
�
1� pF pvY q � F pρ�qqK

� �
ρ�F �∆

�
.

The left-hand side of the preceding equation corresponds to Equation (8), the lower bound
on the expected loss from misreporting as a shill bidder, and the right-hand side corresponds
to Equation (7), the upper bound on the expected gain from misreporting and thus we have
shown that it is equilibrium not to shill when vY is sufficiently high.

Proof of Theorem 4.5.

Let Fm be the discrete approximation of the exponential distribution with rate λ � 1 and
atoms at t0, 2, . . . , 2mu. Then, using the argument from the proof of Theorem 3.6, Fm is
regular and MHR. For all m ¡ 2, an optimal reserve is ρ� � 4. Observe that Y � � 2 satisfies
Equation (6) because

ρ�

ρ� � 2∆

�
fpρ�q

1� F pρ�q


n

�
1

2
pe2 � 1qn ¡ 1 for all n ¥ 1.

We apply Lemma C.3 to conclude that the ascending, screening auction with screen level
vY

�

is weakly shill-proof, ex-post incentive compatible, and optimal for all Fm. Then,

QAS,Y �pFmq � N
�
Y � �min

 
k : ρ� ¤ vk

(
� 2

�
� 2N and

QEpFmq � N
�
m�min

 
k : ρ� ¤ vk

(
� 1

�
� pm� 1qN.

Thus, QASpFm, Y
�q{QEpFmq Ñ 0 as mÑ 8, concluding the proof.

D Single-Action Auctions (Section 5) Appendix

Lemma D.1. For any single-action, optimal auction, there exist unique x̃� : VN Ñ t0, 1uN

and t̃ : VN Ñ RN such that:

(i) (Correspondence) For all v P VN , x̃�pvq � xpσpv;Bqq and t̃pvq � t pσpv;Bqq.

(ii) (Individual Rationality) For all i P B and v, x̃�i pvqvi � t̃ipvq ¥ 0.

(iii) (Incentive Compatibility) For all R, i P R, vi, and v
1
i,

Ev�i,R̃

�
x̃�i

�
σpv; R̃q

	
vi � t̃ipσpv; R̃qq | vi, si � ψpvj iq

�
¥ Ev�i,R̃

�
x̃�i

�
σpv1i, v�i; R̃q

	
vi � t̃i

�
σpv1i, v�i; R̃q

	
| vi, si � ψpvj iq

�
. (9)

Proof. To begin, let us note that we can uniquely define px̃�, t̃q point-wise from σpv;Bq.
The direct allocation rule is uniquely defined as x̃� for all optimal auctions. Next, the
IR constraint (Condition ii) follows immediately from the ex-post IR condition and our
construction of px̃�, t̃q. Finally, Equation (9) comes from Definition A.1 and recalling that
we restrict shill bidders to actions that could have been taken by real bidders.
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Lemma D.2. If a single-action, optimal auction is weakly shill-proof, then for all R, vj minS,
33

and tviuiPS,

Ev

�¸
kPR

t̃k

�
tviuiPS , tviuiRS

	
| vj minS

�
¤ Ev

�¸
kPR

t̃k

�
0, tviuiRS

	
| vj minS

�
.

Proof. Towards contradiction, suppose there exists R, vj minS, and tviuiPS such that

Ev

�¸
kPR

t̃k

�
tviuiPS , tviuiRS

	
| vj minS

�
¡ Ev

�¸
kPR

t̃k

�
0, tviuiRS

	
| vj minS

�
.

We now prove that the deviation by the coalition S where they report tviuiPS is profitable and
therefore that the auction is not weakly shill-proof. By assumption, a shill bidder observes
actions by all bidders who take actions before her. So, tviuiPS can condition on vj minS when
making decisions. Then, the strategy by S of committing to report tviuiPS regardless of what
other bidders play after miniPS tiu must be strictly profitable compared to always reporting
0. Thus, we have found a strategy that does strictly better than always reporting 0: When
the values before miniPS tiu are reported as vj minS, report tviuiPS. Otherwise, report 0. This
strategy in the direct game immediately translates to a profitable deviation in the auction
by Definition A.1 and Lemma D.1 and thus the equilibrium is not weakly shill-proof.

Lemma D.3. If a single-action, optimal auction is strongly shill-proof, then for all R, i R R,
vi, and v�i,

°
kPR t̃kpvi, v�iq ¤

°
kPR t̃kp0, v�iq.

Proof. Towards contradiction, suppose that there exists R, i R R, vi, and v�i such that°
kPR t̃kpvi, v�iq ¡

°
kPR t̃kp0, v�iq. That means in the direct game, reporting 0 is not a dom-

inant strategy for shill bidders. This implies, from Condition i of Lemma D.1, that there
exists a deviation in the auction such that for some value vectors, the seller raises more
revenue. Therefore, the auction is not strongly shill-proof.

Now, when discussing single-action, optimal auctions, we focus on the direct mechanisms
associated to weakly shill-proof auctions and so we will refer to an auction as px̃, t̃, ψq without
reference to R.

Lemma D.4. Suppose a single-action, optimal auction px̃�, t̃, ψq is weakly shill-proof. Then,
for all i, v, and v1j¡i,

�
x̃�i pvq � x̃�i

�
vj¤i, v

1
j¡i

�
ùñ t̃i pvq � t̃i

�
vj¤i, v

1
j¡i

��
.

Proof. Towards contradiction, suppose there exists i, v, and v1j¡i, such that x̃�i pvq � x̃�i
�
vj¤i, v

1
j¡i

�
,

but t̃i pv; sq ¡ t̃i
�
vj¤i, v

1
j¡i; s

�
. Because the auction is winner-paying, it must then be the

case that x̃�i pvq � x̃�i
�
vj¤i, v

1
j¡i

�
� 1. Let R � t1, . . . , iu. Then,

Ev

�¸
kPR

t̃kptviuiPS , tviuiRSq | vj¤minS

�
� t̃i pvq ¡ t̃i

�
vj¤i, v

1
j¡i

�
¥ t̃i pvj¤i, 0q .

This violates Lemma D.2, and so we have reached a contradiction.

33vj minS � tvj : j   miniPS tiuu.
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Lemma D.5. Suppose a single-action, optimal auction px̃�, t̃, ψq is mildly ex-post incentive
compatible and weakly shill-proof. Then, there exists i   N such that for all vi, v

1
i, and

v�i P ψ
�1
i pvj iq,

�
x̃�i pvq � x̃�i pv

1
i, v�iq ùñ t̃ipvq � t̃ipv

1
i, v�iq

�
.

Proof. Let i   N,R Q i, vi, v
1
i, v�i P ψ�1

i pvj iq such that x̃�i pvq � x̃�i pv
1
i, v�iq. WLOG,

suppose vi ¡ v1i. By monotonicity, t̃ipvq ¥ t̃ipv
1
i, v�iq. Towards contradiction, suppose

t̃ipvq ¡ t̃ipv
1
i, v�iq. By the winner-paying property, t̃ipvq ¡ t̃ipv

1
i, v�iq implies that x̃�i pvq �

x̃�i pv
1
i, v�iq � 1. However, note that t̃ipvq ¡ t̃ipv

1
i, v�iq would mean that the utility of report-

ing v1i would be higher than truthful reporting under true value vi which would violate the
mildly ex-post incentive compatiblility and thus t̃ipv

1
i, v�iq � t̃ipv

1
i, v�iq.

Proof of Theorem 5.2.

Towards contradiction, suppose such an auction did exist. Fix i   N, s and suppose vi   vM .
Combining Lemmatta D.4 and D.5, we can see that for all v1i and v�i, v

1
�i P ψ�1

i pvj iq,�
x̃�i pvq � x̃�i pv

1q ùñ t̃ipvq � t̃ipv
1q
�
. So, define t̃�i as the (constant) t̃ipvq for all v such that

x̃�i pvq � 1.
By definition, when x̃�i pvq � 1, it must also be the case that x̃�i pv

M , v�iq � 1. So,
applying the winner-paying property (and suppressing that the expectation is conditioned
on si � ψipvj iq), we have

Ev�i

�
x̃�i

�
vM , v�i

�
vi � t̃i

�
vM , v�i

��
� Ev�i

�
vi � t̃

�
i | x̃

�
i pvq � 1

�
� Ev�i

�
vi � t̃

�
i | x̃

�
i pvq � 0, x̃�i

�
vM , v�i

�
� 1

�
, (10)

and Ev�i

�
x̃�i pvq vi � t̃i pvq

�
� Ev�i

�
vi � t̃

�
i | x̃

�
i pvq � 1

�
. (11)

Taking the difference between Equation (10) and Equation (11), we see that

Ev�i

�
x̃�i

�
vM , v�i

�
vi � t̃i

�
vM , v�i

��
� Ev�i

�
x̃�i pvq vi � t̃i pvq

�
� Ev�i

�
vi � t̃

�
i | x̃

�
i pvq � 0, x̃�i

�
vM , v�i

�
� 1

�
(12)

Now, by definition x̃� is monotone, and by assumption t̃ is monotone. If there exists vm such
that Prx̃�i pv

m, v�iq � 1s   Prx̃�i pv
M , v�iq � 1s, then for such m,

Ev�i

�
x̃�i pv

m, v�iqv
m � t̃ipv

m, v�iq
�
¥ Ev�i

�
x̃�i pv

m�1, v�iqv
m � t̃ipv

m�1, v�iq
�

¡ Ev�i

�
x̃�i pv

m�1, v�iqv
m�1 � t̃ipv

m�1, v�iq
�
¥ 0,

where the last inequality comes from the IR condition. Thus, the IR constraint does not
bind for vi � vm. Since the good has to be allocated to the highest type, for all i   N , there
exists v�i such that x̃�i pvq � 0 and x̃�i pv

M , v�iq � 1. Thus,

Ev�i

�
vi � t̃

�
i | x̃

�
i pvq � 0, x̃�i

�
vM , v�i

�
� 1

�
¡ 0. (13)

Combining Equations (12) and (13), we see that

Ev�i

�
x̃�i

�
vM , v�i

�
vi � t̃i

�
vM , v�i

��
¡ Ev�i

�
x̃�i pvq vi � t̃i pvq

�
. (14)

We then apply the weak shill-proofness condition to simplify Equation (9) to

Ev�i

�
x̃�i pvq vi � t̃ipvq

�
¥ Ev�i

�
x̃�i pv

1
i, v�iq vi � t̃i pv

1
i, v�iq

�
.

Taking v1i � vM , Equation (14) violates the IC constraint from Lemma D.1—and thus we
have reached a contradiction.
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O Online Appendix

The following definition for an extensive form auction is taken34 from Li (2017):

Definition O.1. An extensive form auctionG is defined as the tuple pH, , A,A, P, tIiuiPB , px, tqq
such that:

(i) H is a set of histories, along with a binary relation   on H that represents precedence.
In addition:

(a)   forms a partial order and pH, q forms an arborescence.

(b) There exists an initial history hH � h such that there does not exists h1 where
h1   h.

(c) The set of terminal histories is Z � th :  Dh such that h   h1u.

(d) The set of immediate successors to h is succphq.

(ii) A is the set of possible actions.

(iii) A : HzhH Ñ A maps histories to the most recent action taken to reach it. In addition:

(a) For all h, Aphq is one-to-one on succphq.

(b) The set of actions available at h is

Aphq �
¤

h1Psuccphq

Aph1q.

(iv) P : HzZ Ñ B is the player function for any given non-terminal history.

(v) Ii is a partition of th : P phq � iu such that:

(a) Aphq � Aph1q when h and h1 are in the same cell of the partition, and

(b) Aphq X Aph1q � H when h and h1 are not in the same cell of the partition.

(vi) For every z P Z, z � px, tq, such that
°N
i�1 xi ¤ 1, xi P r0, 1s, and ti P R.

Example O.2. Consider the sealed-bid, first-price (pay-as-bid) optimal auction with equilib-
rium bids b1. The näıve implementation of allocation and transfer rule px̃�, t̃1q in a public auc-
tion would be to query each bidder sequentially on what her value is and then have the pay-
ment rule be t̃1, but t̃1 is not the direct transfer rule of any equilibrium of this game. Indeed,
consider the last bidder who takes a move, and label that bidder N . If vN ¡ maxi N tbiu,
then the only possible equilibrium bid—and therefore the transfer function—is maxi N tbiu.

If we modify the direct transfer rule to represent the bid that each bidder submits in
equilibrium in this sequential form (as one could solve for inductively), the auction would
be weakly shill-proof by regularity. In particular, while a shill bid can force later bidders to
pay a higher price, the probability that no one will want to pay that higher price outweighs
the benefit by regularity. However, such an auction is not strongly shill-proof because, given
full knowledge of real bidders’ valuations, a shill bidder will be incentivized to bid just below
the highest valuation of a subsequent bidder.

34We modify the definition to remove notation we do not use and to make it specific to auctions.
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Example O.3. Let F pxq � 1 � e�0.1x and let F1, F2 be discrete approximations of F with
atoms t0, 5, 9, 14, 20u and t0, 3, 7, 14, 20u, respectively. It can be verified that both these
distributions are regular and have optimal reserve ρ� � 14. Consider a variant of the efficient
Dutch auction (see Equation (1)), with the modification that, if all bidders have indicated
values less than 20, then the auction queries bidders from lowest-to highest-priority as to
whether their value is at least 9. If no one indicates that their value is at least 9, then the
Dutch auction continues. If at least one person does indicate that their value is at least 9,
then bidders are queried from lowest- to highest-priority as to whether their value is 14, and
the transfer is 14 if at least two people have value 14, and 9 if only one person does. It can be
verified that if the value distribution is F1, the auction just described is weakly shill-proof,
but if the value distribution is F2, then the auction is not weakly shill-proof. When the value
distribution is F2, in expectation, a shill bidder will want to report that her value is 9. In
fact, Lemma B.5 (see appendix) implies that if the value distribution is F2, then the auction
in this example must be a semi-Dutch auction with cutoff at least 14.

O.1 Credibility

The following definitions are adapted from Akbarpour and Li (2020) to match our notation
and specialized to the auction setting:

For any extensive form game G, we can define a messaging game as follows:

1. The auctioneer chooses to:

(a) Select an outcome and end the game; or

(b) Go to step 2.

2. The auctioneer chooses some bidder i P B and sends a message m � Ii P Ii.

3. Bidder i privately observes message m � Ii and chooses reply r P ApIiq.

4. The auctioneer privately observes r.

5. Go to step 1.

We can now write bidder i’s observations in the game as ppmk
i , r

k
i q
τi
k�1, ωiq where τi is the

number of observations i has and ωi is the information partition over outcomes that i ob-
serves. Let oipσ0, σ, vq be i’s observation when the auctioneer plays σ0, the bidders play σ,
and the type profile is v.

Definition O.4 (Akbarpour and Li (2020)). Let σG0 be the rule-following auctioneer
strategy. Formally, σG0 is defined by the following algorithm: Initialize ĥ :� hH. At each

step, if ĥ P z, end the game and choose outcome px, tqpĥq. Else, contact agent P pĥq and send
message m � IP pĥq such that P pĥq P IP pĥq. Upon receiving reply r, update ĥ to h such that

h P succpĥq and Aphq � r, then iterate.

Definition O.5 (Akbarpour and Li (2020), Definition 3). Given some promised strategy
profile pσ0, σq, auctioneer strategy σ̂0 is safe if, for all agents i P B and all type profiles v,
there exists v1�i such that oipσ̂0, σ, vq � oipσ0, σ, pvi, v

1
�iqq. We denote by Σ�

0pσ0, σq the set of
safe strategies.
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Definition O.6 (Akbarpour and Li (2020), Definition 4). pG, σq is credible if

σG0 P argmax
σ0PΣ

�

0 pσ
G
0 ,σq

#
Ev

�¸
iPB

tipσ0, σ, vq

�+

Proof of Proposition 6.1

Strong Shill-Proofness Ñ Credibility. We prove the contrapositive: Suppose pG, σq is
not credible. Let σ̂0 P Σ�

0pσ
G
0 , σq be a profitable and safe deviation by the auctioneer. By

Definition O.5, there exists v and
 
v1�i

(
i
such that oipσ̂0, σ, vq � oipσ0, σ, pvi, v

1
�iqq for all i. By

Lemma A.2, only one bidder i� has ti�pσpvi� , v
1
�i�qq � 0 and so ti�pσpvi� , v

1
�i�qq ¡ ti�pσpvqq

because σ̂0 is profitable. Then, let R � ti�u, and by ex-post monotonicity,

ti�pσpvi� , v
1
�i�qq ¡ ti�pσpvqq ¥ ti�pσpvi� , 0qq,

and so the auction is not strongly shill-proof.
Credibility Ñ Weak Shill-Proofness. We prove the contrapositive: Suppose pG, σq

is not weakly shill-proof. Let σ̂ P ΣS be a profitable shilling strategy. Then, by Definition A.1,
for all R, there exists v, v1 such that σ̂pv;Rq � σpv;Bq. Consider the following reporting
strategy σ̂0: for all i P R, report play as if i P R is following σ̂; and for all i R R, report in
the rule-following manner. This strategy is safe because σ̂ P ΣS. To see that it is profitable
compared to σG0 , consider what happens when the winning bidder i is or is not in R.35

Conditional on i P R winning, σ̂0 increases expected revenue because σ̂ is a profitable shill
bidding strategy. Conditional on i R R winning, shill bidding would have led 0 revenue for
the seller and, by Lemma A.2, σ̂0 must have non-negative revenue. Thus, our described
reporting strategy is a profitable, safe strategy and therefore the auction is not credible.

O.2 Generalizing Credibility in the Single-Action Case

Definition O.7. Fix a single-action, optimal auction with exogenous signal ψ and a set of
real bidders R. The set of safe deviations to report to i P B is

Aψ
i pvj¤iq �

ta : Dṽ�i such that rj   i, vj � 0 ùñ ṽj � vjs and a � pσipvi;ψipṽj iqq, σ�i pvi, ṽ�i;Bqqu .

The total set of safe deviations is

Aψpvq �

# 
a⇝i

(
: a⇝i P Aψ

i pvj¤iq and
Ņ

i�1

xi
�
a⇝i

�
¤ 1

+
.

Definition O.7 allows the auctioneer to report any value she chooses when a bidder’s
declared valuation is 0. Note that if we take the canonical setting where there are no
exogenous signals, the above assumption is without loss.

35Note that if no one has value above the optimal reserve, there will be no winner under any safe strategy,
so let us only consider the case where the good is allocated.
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Definition O.8. A single-action, optimal auction is ψ-credible if for all v and ta⇝iu P
Aψpvq, we have ¸

i

tipa
⇝iq ¤

¸
i

tipσpv;Bqq.

Lemma O.9. For a single-action, optimal auction, define the augmented (direct) inverseqψ�1
i as qψ�1

i pvq � t0u Y ψ
�1
i pvj iq. Then for

Vψpvq �

# 
v⇝i

(
: v⇝i P qψ�1

i pvq,
¸
i

x̃�i pv
⇝iq ¤ 1

+
,

the auction is credible if and only if for all v, and tv⇝iu P Vψpvq,¸
i

t̃ipv
⇝iq ¤

¸
i

t̃ipvq.

Proof. Apply Lemma D.1, specifically the unique mapping between px̃�, t̃q and px, tq to
Definitions O.6 and O.7 to see that the lemma holds.

Lemma O.10. Suppose a single-action, optimal auction is weakly shill-proof, but not strongly shill-
proof. Then, there exist R, vR, and v�R such that¸

kPR

t̃kpvR, v�Rq ¡
¸
kPR

t̃kpvR, 0q. (15)

Proof. Suppose that pG, σq is weakly shill-proof, but not strongly shill-proof. Because pG, σq
is weakly shill-proof, for all v and R,R1, we can define σ̂pvq � σpv;Rq � σpv;R1q. Since
pG, σq is not strongly shill-proof, σ̂ must not be an ex-post strategy for the shill bidders.
So, for some realization of R and vR there exists a profitable deviation for the shill bidders;
examining the set of possible deviations ΣS in Definition A.1, we see that any profitable
deviating actions induces a profitable misreport v�R in the direct mechanism for some R
and vR; proving Equation (15) can be satisfied.

Proof of Proposition 6.2

Weak Shill-Proofness Ñ pψ � Idq-Credibility. Suppose the auction is not pψ � Idq-
credible. Then, combining Lemma O.9 with the ex-post IR condition, there exist v, tv⇝iu P
Vψpvq and k� such that t̃k�pv

⇝k�q ¡ t̃k�pvq. Applying the winner-paying property, it is the
case that for all j � k�, t̃jpv

⇝k�q � 0. Since ψ � Id, for all j ¤ k, it is the case that
v⇝k

�

j � vj or vj � 0. Let R � t1, . . . , k�u. Then,¸
iPR

t̃ipv
⇝k�q � t̃k�pv

⇝k�q

¥ t̃k�
�
v1, . . . , vk� , v

⇝k�
k��1, . . . , v

⇝k�
N

	
¥ t̃k� pv1, . . . , vk� , 0, . . . , 0q

�
¸
iPR

t̃ipvR, 0q.
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Thus, we can apply Lemma D.2 to conclude that the auction is not weakly shill-proof.
ψ-CredibilityÑWeak Shill-Proofness. Suppose the auction is ψ-credible. Towards

contradiction, suppose the auction is not weakly shill-proof. So, there exists R and v such
that σpv;Rq � σpv;Bq. In particular, this means that shill bidders have, in expectation,
a profitable deviation relative to acting as real bidders with valuation 0. If this is true in
expectation, there must then exist v � pvR, 0q and ṽ�R such that¸

iPR

t̃ippvR, ṽ�Rqq ¡
¸
iPR

t̃ippvR, 0qq.

Now, let us consider the messaging deviation

 
v⇝i

(
iPB
�

#
pvR, ṽ�Rq i P R

pvR, 0q otherwise
.

By the definition of credibility, the auctioneer can report any value to other bidders when the
value reported to him is 0 and bidders with value 0 are told the other bidders’ true reports.
Therefore, tv⇝iu P VψpvR, 0q and¸

i

t̃ipv
⇝iq �

¸
iPR

t̃ipvR, ṽ�Rq �
¸
iRR

t̃ipvR, 0q ¡
¸
i

t̃ippvR, 0qq.

This contradicts Lemma O.9, and so the auction must be weakly shill-proof.
pψ � Hq-Credibility Ñ Strong Shill-Proofness. Suppose that the auction is not

strongly shill-proof and ψ � H. There are two cases to consider: either the auction is not
weakly shill-proof or it is. If the auction is not weakly shill-proof, then we can apply the
previous case to conclude the auction is not pψ � Hq-credible. If the auction is weakly shill-
proof, but not strongly shill-proof, then by Lemma O.10, there exists R, k� P R, vR, and
v�R such that t̃k�pvq ¡ t̃k�pvR, 0q. Thus, we can construct the following profitable auctioneer
reporting deviation:  

v⇝i
(
iPB
�

#
pvR, v�Rq i � k�

pvR, 0q otherwise
.

Since ψ � H, we know that tṽ⇝iu P VψpvR, 0q. The total transfers is then¸
i

t̃i
�
v⇝i

�
� t̃k�pvq �

¸
i�k�

t̃i pvR, 0q ¡
¸
i

t̃i pvR, 0q ;

hence, by Lemma O.9, we see that the auction is not credible.
Strong Shill-ProofnessÑ ψ-Credibility. Suppose that the auction is not ψ-credible.

Then, combining Lemma O.9 with the ex-post IR condition, there exists v, tv⇝iu P Vψpvq
and k� such that t̃k�pv

⇝k�q ¡ t̃k�pvq. Recall, by the definition of ψ�1, that v⇝k
�

k� � vk� .
Suppose R � tk�u. Then,¸

iPR

t̃ipv
⇝k�q � t̃k�pv

⇝k�q ¡ t̃k�pvq ¥ t̃k�pvk� , 0q �
¸
iPR

t̃k�pvk� , 0q.

Therefore, by Lemma D.3, the auction is not strongly shill-proof.
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