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Abstract

We characterize single-item auction formats that are shill-proof in the sense that a
profit-maximizing seller has no incentive to submit shill bids. We distinguish between
strong shill-proofness, in which a seller with full knowledge of bidders’ valuations can
never profit from shilling, and weak shill-proofness, which requires only that the ex-
pected equilibrium profit from shilling is non-positive. The Dutch auction (with a
suitable reserve) is the unique (revenue-)optimal and strongly shill-proof auction. Any
deterministic auction can satisfy only two properties in the set tstatic, strategy-proof,
weakly shill-proofu. Our main results extend to settings with affiliated and interdepen-
dent values.
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1 Introduction

1.1 Shill Bidding in Auctions

Shill Bidding in Practice. Auction theory typically assumes that an auction is carried
out as described (by the seller or a third party) and focuses solely on the bidders’ incen-
tives. Reality is often different. For example, while major auction houses like Christie’s or
Sotheby’s may appear to be carrying out textbook English (ascending) auctions, a degree of
skullduggery is often afoot. According to a New York Times article from 2000:

Some tricks of the trade, like an auctioneer’s drumming up excitement by ac-
knowledging nonexistent bids only he hears and potential buyers who bid with
nearly imperceptible secret signals, have been around for decades. Making up
bids, for instance, is known as “bidding off the chandelier” from an era when the
grand auction rooms were adorned with ornate lighting.1

The practice continues to this day: Christie’s Conditions of Sale for their flagship New
York location, in a section titled “Auctioneer’s Discretion,” states (among other things) that
“The auctioneer can. . .move the bidding backwards or forwards in any way he or she may
decide. . . .”2

Such chandelier bids or shill bids—bids submitted by the seller in order to manipulate
the final selling price—appear to be particularly common in online auctions. For example,
eBay has long gone out of its way to emphasize that shill bidding is forbidden and will be
punished:

We want to maintain a fair marketplace for all our users, and as such, shill bidding
is prohibited on eBay. [. . . ] eBay has a number of systems in place to detect and
monitor bidding patterns and practices. If we identify any malicious behavior,
we’ll take steps to prevent it.3

According to many eBay users, however, shill bidding remains rampant. Here’s a sample
quote from the eBay discussion forums:

The Sellers post a Buy Now price 3–4 times the actual cost of the item. Then
they place the item on an auction at $0.01. This is to get as many views as
possible. The shill comes in shortly after the auction starts and . . . is there to
prevent the item from being sold below their profit margin.4

Chen et al. (2020) find that nearly 10% of all bidders on eBay Motors are shill bidders.
Shill-Proof Auctions. Much of auction theory to date encourages truthful bidding

through careful auction design, while punting on challenges like seller deviations and collu-
sion via appeal to unmodeled concepts such as the out-of-mechanism enforcement of rules.

1See “Genteel Auction Houses Turning Aggressive,” New York Times, April 24, 2000.
2See https://www.christies.com/help/buying-guide-important-information/

conditions-of-sale.
3See https://www.ebay.com/help/policies/selling-policies/selling-practices-policy/

shill-bidding-policy?id=4353.
4See https://community.ebay.com/t5/Buying/My-experience-with-Shill-bidders/td-p/

30402514.
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Anecdotes about eBay and other online platforms suggest that such methods are only par-
tially effective at deterring seller deviations. Thus, it makes sense to ask: To what extent
can these deviations instead be disincentivized through an auction’s design?

The goal of this paper is to understand which auction formats are “shill-proof” in the
sense that a seller cannot profit through the submission of shill bids. We show that shill
bidding can matter even in private-value auctions. The reader might wonder why shill bids
can have an impact in the private-values case—assuming that the choice of reserve price does
not affect participation (as it does in the eBay example), isn’t a shill bid the same thing as
a reserve price?

The answer depends on when the seller has an opportunity to shill and the information
available to them at that time. For example, consider an English auction in which the seller
also participates via shill bidding. Suppose the valuations of the (real) bidders are private
and drawn i.i.d. from a regular distribution F and that the opening bid of the auction is set
optimally (for revenue), to the monopoly price θρ

�

of F . As the auction proceeds, with the
offered price p starting at θρ

�

and increasing from there (in increments of ϵ, say), the seller
can shill bid at any time. Suppose that the only additional information known to the seller
at a given round of the auction is that the remaining bidders are willing to pay at least p.
Then, the seller asks himself: “now that I know how many bidders are willing to pay at
least p, do I want to shill and reset the reserve price to p� ϵ?” Under our assumption that F
is regular, the answer is “no,” and an expected revenue–maximizing seller will never shill.5

Now suppose that the seller has full knowledge of bidders’ realized valuations. In this
scenario, the seller will certainly, in some cases, want to shill in an English auction to push
the price up to just below the highest of the bidders’ valuations. Lest this informational
assumption—that the seller knows the full valuation profile—seem impossibly demanding,
consider the Dutch (descending) auction (with an arbitrary reserve price). Here, any shill
bid by the seller terminates the auction immediately, leaving the seller holding the item and
earning zero revenue. Therefore, even if the seller knows the full valuation profile, he would
not want to shill bid.

We map out a theory of “shill-proof” auctions, focusing on the following basic questions:

• Which auction formats are “strongly shill-proof” in the sense of the Dutch auction,
i.e., with shill bidding being unprofitable even with full knowledge of bidders’ realized
valuations?

• Which auction formats are “weakly shill-proof” in the sense of the English auction (with
bidders’ valuations drawn i.i.d. from a regular distribution and an optimally chosen
reserve price), i.e., with shill bidding being unprofitable in expectation at equilibrium?

• To what extent are strong and weak shill-proofness compatible with other desirable
properties such as optimality, efficiency, ex-post incentive compatiblility, and sealed-bid
implementation? To what extent is shill-proofness dependent on the bidders’ valuation
structure?

5Auction theory experts will now immediately recognize that the English auction with an optimally chosen
reserve price is not generally shill-proof in this sense when the valuation distribution is not regular or the
values are not private. See, for example, Footnote 18 of Milgrom and Weber (1982) for more discussion of
the latter point.
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1.2 Overview of Results

Iterative auction formats like Dutch and English auctions play a central role in our theory,
and accordingly we study (real and shill) bidding in the extensive-form game that is induced
by a choice of auction format, relying on a framework for extensive-form auction analysis de-
veloped by Li (2017) and Akbarpour and Li (2020). We consider single-item auctions with N
bidders. A subset of these are shill bidders, which we model as bidders with zero private
value for the item and with utility equal to the seller’s revenue.6 For most of the paper, we
assume that non-shill bidders have private valuations drawn i.i.d. from a known distribution.
In Section 5, we generalize to any affiliated type distribution and any interdependent value
function satisfying some curvature assumptions (Assumption 5.1). We also assume that shill
bidders observe all actions. An auction is then weakly shill-proof (Definition 2.1) if there
exists an equilibrium of the induced extensive-form game in which the shill bidders never
shill (i.e., always bid their true private value of 0). An auction is strongly shill-proof (Defini-
tion 2.2) if, moreover, shill bidders’ equilibrium strategies are ex-post strategies. In our first
result, we focus on public auctions (Definition 3.4), meaning auctions in which every bidder’s
action is publicly observable. This is arguably the most natural model for the analysis of
typical iterative auctions such as Dutch and English auctions. We then turn to arbitrary
information structures to prove our other results.

Next, we summarize the main results of this paper; see also Figure 1.
Strongly Shill-Proof Auctions. Our main result (Theorem 3.6) uniquely charac-

terizes strongly shill-proof auctions: the Dutch auction (with consistent tie-breaking and
monopoly reserve price) is strongly shill-proof and optimal (i.e., maximizes the seller’s ex-
pected revenue), and is the only such auction in the public setting. In particular, strongly shill-
proof optimal auctions cannot avoid using a large number of rounds, and they cannot be
ex-post incentive compatible (for real bidders). The rough intuition for the proof of this
result is that: (i) No matter the information structure, strongly shill-proof auctions must be
pay-as-bid (Lemma 3.1); (ii) for any auction format other than a Dutch auction, there exists
a history in which some bidder i can indicate that her value is higher than 0 without the
auction ending immediately; (iii) incentive compatibility in tandem with the public setting
then implies that this information effectively induces the auction to revise its reserve price
upward or increases perceived competitiveness for the item being sold, which reduces bid
shading; and thus (iv) there exist valuations for the bidders such that, if bidder i is a shill
bidder, shilling will increase the seller’s revenue.7

Weakly Shill-Proof and Ex-Post Incentive Compatible Static Auctions. We
next turn to investigating the richer design space of weakly shill-proof auctions. Our main
result about weakly shill-proof auctions (Theorem 4.3), focuses on single-action auctions,
meaning auction formats that induce extensive-form games in which each bidder moves
exactly once. In our framework, a single-action auction is static when each bidder moves

6The prior literature has sometimes modeled shill bidding via an unknown number of bidders, with some
subset of the bidders who end up participating in the auction being shills. Our framework is essentially
equivalent: we can take N to be large and require 0 to be in the support of the valuation distribution; and
a bidder with value 0 is equivalent (in terms of outcomes) to a bidder not arriving.

7We focus on single-item auctions, but our uniqueness results a fortiori provide an upper bound on what
is possible for multiunit auctions, as well. We leave formal study of multi-unit auctions and other settings,
such as sequential auctions, to future work.
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simultaneously. We prove that no weakly shill-proof, single-action auction can satisfy even
a very weak ex-post incentive compatiblility condition (Definition 4.2). Thus, an auction
can satisfy two and only two of the properties in the set tsingle-action, ex-post incentive
compatible, weakly shill-proofu.8

Weakly Shill-Proof and Efficient Auctions. We then investigate efficient (and
weakly shill-proof) public auctions. We prove that a Dutch auction with a reserve price
of 0 is the unique prior-independent auction (in the sense of Dhangwatnotai et al. (2015),
with no dependence whatsoever on the valuation distribution) that is both efficient and
weakly shill-proof (Corollary 4.8). In the regular, IPV case, we show (in Proposition 4.6)
that fixing the monopoly price, a prior-independent, weakly shill-proof and efficient auction
must conclude with a Dutch auction when all bidders’ valuations are known to be below said
price. A format such as beginning with an English auction at the monopoly price and then,
should there be no takers, concluding with a Dutch auction is an example of an auction that
is weakly shill-proof and efficient given the monopoly price.9

Weakly Shill-Proof and Ex-Post Incentive Compatible Optimal Auctions.
The previous two results imply that ex-post incentive compatible auctions cannot be both
strongly shill-proof and optimal, nor can they be (robustly) weakly shill-proof and efficient.
The English auction (with an optimal reserve price) is, as we’ve noted, weakly shill-proof,
optimal, and ex-post incentive compatible in the regular, IPV case. Is it the unique such
auction? Does this combination of properties require a potentially large number of rounds?
Our next result (Proposition 4.12) shows that, in general, the answer is no: In fact, although
we can never find a weakly shill-proof, optimal, and ex-post incentive compatible auction
that finishes in one round, we can always find a weakly shill-proof auction and a valuation
distribution such that the worst-case number of auction rounds required is an arbitrarily
small fraction of the number of rounds needed in the English auction.

Affiliated and Interdependent Values. Our last theorem, Theorem 5.4, shows that
as the type distribution becomes less affiliated (Definition 5.2) and the values become less
commonly valued (Definition 5.3), then both the set of strongly shill-proof auctions and the
set of weakly shill-proof auctions expand. We then apply Theorem 5.4 to show most of
our characterization results (Theorem 3.6, Theorem 4.3, and Corollary 4.8) hold in a more
general, affiliated environment. Theorem 5.4 means that shill-proofness admits a partial
order with respect to both the value function and the affiliation structure. Our theorem
holds for any affiliation structure, most commonly used interdependent value functions (the
function must satisfy Assumption 5.1), and any extensive-form auction where an optimal
transfer rule is used. The last restriction is necessary because we consider discrete types and
so there are a multitude of incentive compatible transfers that could yield different revenue.
We generalize Lemma 3.1 in Proposition 5.7 to show that even with affiliation, a strongly
shill-proof and optimal auction must be pay-as-bid with a reserve structure on the allocation.

8Assuming a regular valuation distribution and a corresponding optimal reserve price, a second-price
auction is single-action and ex-post incentive compatible; a first-price auction is single-action and weakly shill-
proof; and an English auction is ex-post incentive compatible and weakly shill-proof.

9In fact, this auction format closely resembles the Honolulu–Sydney fish auction documented by Hafalir
et al. (2023).
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Static Not Static
Strategy- Impossible Ascending, Screening Auction
Proof (Theorem 4.3) (Proposition 4.12)

Not Strategy- First-Price Auction Dutch Auction
Proof (Theorem 3.6)

(a) Weakly shill-proof and optimal auctions

Static Not Static
Strategy- Impossible Not Robustly
Proof (Theorem 4.3) (Proposition 4.6)

Not Strategy- Not Robustly Dutch Auction
Proof (Proposition 4.6) (Robustly Unique, Proposition 4.6)

(b) Weakly shill-proof and efficient auctions

Static Not Static
Strategy- Impossible Impossible
Proof (Theorem 3.6) (Theorem 3.6)

Not Strategy- Impossible Dutch Auction
Proof (Theorem 3.6) (Unique, Theorem 3.6)

(c) Strongly shill-proof and optimal auctions

Static Not Static
Strategy- Impossible Impossible
Proof (Proposition 4.6) (Proposition 4.6)

Not Strategy- Impossible Dutch Auction
Proof (Proposition 4.6) (Unique, Proposition 4.6)

(d) Strongly shill-proof and efficient auctions

Figure 1: Summary of Results. Characterization of single-item auction formats that are
strongly or weakly shill-proof, along with other properties such as optimality, efficiency, ex-
post incentive compatiblility, and sealed-bid implementations.

1.3 Related Work

While the idea and practice of shill bidding by a seller have long been well known, the auction
theory literature on the topic is surprisingly thin. Chakraborty and Kosmopoulou (2004)
consider common value auctions and focus on technological barriers (as opposed to auction
formats) that can mitigate shill bidding. Lamy (2009) studies shill bidding specifically in
English auctions in which bidders’ valuations are affiliated in the sense of Milgrom and
Weber (1982), and proves that shill bidding effectively cancels out the effects of affiliation in
equilibrium due to real bidders conditioning on bids being fake (see also Izmalkov (2004)).
We also consider shill bidding in affiliated environments, but consider a much larger class of
possible extensive-form games.

Porter and Shoham (2005) consider a model similar to a second-price auction, moti-
vated by “cheating” by online platforms that can announce a manipulated auction outcome
subsequent to collecting all of the bidders’ bids. More recently, a number of works (e.g.,
Roughgarden (2021); Lavi et al. (2022); Basu et al. (2023); Chung and Shi (2023)) have
considered shill bidding in the context of blockchain transaction fee mechanism design, with
an emphasis on knapsack auctions that are ex-post incentive compatible, shill-proof, and
robust to various forms of collusion. Ausubel and Milgrom (2006) and Day and Milgrom
(2008) consider shill bids by bidders in a multi-item auction, who are looking to exploit
complementarities to lower their payments in VCG-type mechanisms—as opposed to shill
bids by a seller looking to increase revenue, as is the case of this paper.10 Contemporane-
ous work by Shinozaki (2024) and Zeng (2024) also study shill bidding, but take a different
approach to the problem. While we study ex-interim deterrence against shill bidding in ex-
tensive form games, they group auctions into equivalence classes based on the outcome and
primarily focus on ex-ante deterrence against the seller inserting additional bidders into the
auction to increase perceived competition. The results in those papers are complementary
to ours: While we show that the dynamics of the auction are important for preventing shill
bidding, they show that when the shill bidders can increase perceived competition outside

10More broadly there is a literature on sybil-resistance referred to as “false-name proofness” (see, e.g.,
Conitzer et al. (2010) for a reference).
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of taking actions in the auction, only the posted-price mechanism is non-manipulable (see
also Footnote 13).

Our theory of shill-proof auctions is similar in spirit to the theory of credible mechanisms
developed by Akbarpour and Li (2020), and leverages their framework for extensive-form
auction analysis. That said, shill-proofness differs conceptually from credibility as shill-
proofness focuses on the auctioneer’s incentives to insert fake bids, whereas credibility focuses
on the auctioneer’s incentive to truthfully report the actions of a bidder to other bidders.
Furthermore, the results in this paper are also qualitatively different. For example, there
are a multitude of credible auctions, but only one strongly shill-proof auction and there are
a multitude of strategy-proof and weakly shill-proof auctions, but only one strategy-proof
and credible auction (see Section 6.1 for more discussion). In Proposition 6.1, we prove that
strong shill-proofness is a stronger condition than credibility and weak shill-proofness is a
weaker condition in the sense that if an auction is strongly shill-proof, then it is credible,
which in turn implies that it is weakly shill-proof.

More recent research on credible mechanisms, usually with a focus on evading the impos-
sibility results of Akbarpour and Li (2020) under extra assumptions (such as adding crypto-
graphic tools), includes the work of Essaidi et al. (2022), Ferreira and Weinberg (2020), and
Chitra et al. (2023). More distantly related papers include that of Haupt and Hitzig (2021),
who prove a uniqueness result for the Dutch auction under contextual privacy constraints.

1.4 Outline of the Paper

In Section 2, we present our formal model of shill bidding in auctions. Section 3 studies
strong shill-proofness and shows the ways in which Dutch auctions are uniquely optimal
at disincentivizing shill bidding. Section 4 explores which formats are weakly shill-proof
and provides a trilemma result. Section 5 generalizes the model to a setting with affiliation
and interdependent values, proves that shill-proofness admits, and ordering with respect to
affiliation and interdependent values, and generalizes our results. In Section 6, we conclude
the paper by discussing extensions.

2 Model

In this paper, we consider extensive-form, single item auctions. An extensive-form game
G is a tuple of possible histories H, and, for each history h P H, functions mapping h to:
(i) a player taking an action, P phq; (ii) a set of possible actions, Aphq; (iii) an information
set, Iphq; and (iv) the most recent action taken, Aphq. As further notation, we denote the
starting history of the game by hH and the set of terminal histories as Z; we say h1   h if
h1 precedes h, i.e., there exists a sequence of actions that lead from h1 to h.

We restrict attention to single-item auctions, which means that for every terminal history
z P Z, we can associate an allocation and transfer vector: z � px, tq, with

°N
i�1 xi ¤ 1 and

xi P t0, 1u for all i. Abusing notation slightly, we use xpzq, tpzq to mean the vectors px, tq
associated with the terminal history z. We also assume perfect recall and finite depth. (Def-
inition E.1 in the Supplemental Appendix gives a formal, thorough, and standard definition
of extensive-form games.)
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2.1 Bidders – Real and Shill

In the auction, there is a set of potential bidders B, with |B| � N , who might participate.
We assume that the seller’s value is commonly known to be 0. Of these potential bidders, a
set of real bidders R actually participate. Each bidder i P B has an independent probability
p of participating, P ri P Rs � p.11 The other bidders, S � BzR, are shill bidders whose
incentives are completely aligned with the seller/auctioneer’s, i.e., their utility is defined by
the sum of real bidders’ transfers: for i P S, uipzq �

°
jPR tjpzq. Each real bidder i P R

has value θi for the item being sold where θi � F independently for each i. Each real
bidder has quasi-linear utility: for i P R, uipzq � xipzqθi � tipzq. We assume F is discrete,
with support ϑ consisting of the ordered atoms 0 � θ1   θ2   . . .   θM , and we define
fpθkq � Pw�F

�
w � θk

�
to be the probability mass function (pmf) of the distribution. As

notation, for each shill bidder i P S, we assign θi � 0 and let θ � pθ1, . . . , θNq. The choice of
values for shill bidders does not affect their incentives, and by supposing that their values are
0, we can define efficiency and optimality (revenue-maximization) in terms of only θ instead
of θ and R.12 Observe that given how θ is generated, we are in the standard, symmetric,
single-item independent private values (IPV) setting.

Note that (i) whether a given bidder is real and (ii) the bidders’ values for the item are
not built into the extensive-form game G. Instead, bidders’ strategies are a function of their
types. Like most papers in the extensive-form auction literature, we study games with a
finite type space because defining auctions with a continuum of types requires defining a
general class of continuous-time games. To the authors’ knowledge, there is no theory of
continuous-time games that rivals the generality and flexibility of extensive-form games.

Real bidders have no ex-ante information about who else is a real bidder; they only
know that each other bidder is real with probability p.13 However, throughout the course
of the auction, they can update their beliefs about which bidders are real and adjust their
actions accordingly. We assume that shill bidders know the set of shill bidders and observe
all previous actions taken. Formally, for any history h, if P phq P S, then Iphq � thu. This
assumption rules out games with simultaneity (including static games) from the perspective
of the shill bidders, but not real bidders.14

Our equilibrium concept is pure-strategy Perfect Bayesian Equilibrium; a formal defi-
nition of the auction equilibrium pG, σq can be found in Definition A.1. We write σpθ;Rq
for the strategy profile when the value profile is θ and the realized set of real bidders is
R. Perfect Bayesian equilibria are defined without consideration of group deviations by the

11This randomness plays little role in our analysis—we impose it only so that the overarching structure of
our model has bidders with ex-ante, symmetric, independent private values. See also Footnote 6.

12When considering optimal auctions, we naturally assume the seller only cares about raising revenue from
real bidders rather than shill bidders, since shill bidders are proxies for the seller themself.

13Unlike the assumption that N is fixed, this assumption is an economically substantive one: The only way
for shill bidders to manipulate the outcome of the auction is for shill bidders to take actions in the auction.
If the bidders instead knew who were the real bidders, shill bidders could have an incentive to appear as real
bidders in order to increase perceived competition.

14In extensive form games, simultaneity is modeled as the information set of a player having multiple
elements. Without cryptography or other unmodeled technologies, we view it as reasonable to assume that
while the auction may appear simultaneous to the real bidders, actions are taking place sequentially and the
seller can observe those actions.
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shill bidders. However, with this setup, it is without loss to focus only on individual shill
bidder’s incentives as opposed to any group actions because all the shill bidders have the
same objective function and information available to them.

2.2 Auction Environment

Throughout the paper, we focus on auction equilibria that are ex-post monotone and in-
dividually rational: The auction equilibrium pG, σq is monotone if, for all i, j, θ�j, and
θj ¡ θ1j,

�
ti pσpθ;Bqq ¡ 0 ùñ ti pσpθ;Bqq ¥ ti

�
σpθ1j, θ�j;Bq

��
, and is individually ratio-

nal (IR) if, for all v and i P B, xipσpθ;Bqqvi � tipσpθ;Bqq ¥ 0. The monotonicity condition
on transfers is satisfied by all standard single-item auction formats such as English auctions,
Vickrey auctions, Dutch auctions, and sealed first-price auctions. Moreover, note that we
impose the monotonicity condition primarily for convenience; all our results continue to hold
if we instead just assume that total transfers are weakly higher whenever any bidder reports
a value higher than 0. The ex-post IR condition rules out all-pay auctions and ensures that
only the winner pays the seller.15 We also make this assumption primarily for convenience,
versions of all our main results would still hold if we were to relax to ex-interim IR.

2.3 Shill-Proofness

Next, we define our key shill-proofness desiderata. We are interested in auction equilibria
in which shill bidders do not shill. Formally, this corresponds to requiring that shill bidders
always act like real bidders who have value 0 for the item—since real bidders who have value
0 will never enter non-trivial bids in equilibrium, requiring shill bidders to have the same
actions in equilibrium in effect means that shilling does not occur.

Definition 2.1. An auction equilibrium pG, σq is weakly shill-proof if σ is invariant to
the realization of S, i.e., for all θ and S, S 1 � ti : θi � 0u: σ pθ;BzSq � σ pθ;BzS 1q.

Note that Definition 2.1 is a statement about an equilibrium of an auction—it is possible
(although we have not found an example of this) that an auction may have both shill-proof
equilibria and non-shill-proof equilibria.

We can also strengthen our no-shilling criterion from equilibrium to ex-post strategy:

Definition 2.2. An auction equilibrium pG, σq is strongly shill-proof if it is weakly shill-
proof and σ is an ex-post strategy profile for shill bidders, i.e., for all σ1, S, and θ�S,¸

jPR

tjpσp0, θ�S;Rqq ¥
¸
jPR

tj pσ
1
S, σ�Sp0, θ�S;Rqq .

Strong shill-proofness is obviously preferable to weak shill-proofness (all else equal), espe-
cially if there are concerns about a seller acquiring information about real bidders’ valuations
beyond what is encoded by the prior. As we will see, however, the design space of weak shill-
proof auctions is meaningfully larger than that of strong shill-proof auctions.

15Unlike with continuous types, with discrete types there is positive probability of multiple bidders having
the same highest value and so an optimal or efficient auction make randomize between bidders. For many
of our results, we will assume Definition 3.2 to rule out this case.

9



2.4 Revelation Principle

In order to make progress in understanding shill-proof auction formats, the following rev-
elation principle will be helpful: for every auction equilibrium pG, σq, there exists a direct
auction that can be summarized by a direct allocation rule x̃ : ϑN Ñ r0, 1sN , a direct transfer
rule t̃ : ϑN Ñ RN , a menu rule

µ : P
�
ϑN

�
�B Ñ

M¤
L�2

�
tT P Πpϑq | |T | � Lu �BL

�
where Πpϑq is the set of all possible partitions over the type space, and a starting player
ξ0 P B.16 The first input to the menu rule µ is a set Θ of valuation profiles of the form
Θ � Θ1 � Θ2 � � � � � ΘN with Θi � ϑ for all i—intuitively, the valuation profiles that are,
in equilibrium, consistent with a particular history. The second input is a player ξ who is

to move next. The output of the rule is a collection
!�
Wℓ, ξ⃗ℓ

	)
ℓPt1,...,Lu

, where the Wℓ’s

are a partition of Θξ (the equilibrium strategy σ determines the partition; player ξ will

truthfully choose a subset based on her valuation) and ξ⃗ℓ indicates the next player to move
should player ξ choose Wℓ. Under σ, the player ξ will always select the partition Wℓ such
that θξ P Wℓ. If ξ⃗ℓ � H, then the game ends should choice ℓ be selected by the bidder ξ.
For a typical iterative auction, one generally has L � 2 with the two sets corresponding to
types above and below some value, respectively. Or, for a single-action auction, the Wℓ’s are
generally singletons, with one per type in Θi.

We show that for any implementable outcome px̃, t̃q of the auction, we can always find
a menu rule that is “informative”—the set of possible outcomes differs across partition
selections17—that also implements the same outcome. So, without loss of generality, we
restrict menu rules in this way and then describe an auction equilibrium by px̃, t̃, µ, ξ0q.
(See Lemma A.4 in the Appendix for a more formal treatment.) We refer to px̃, t̃, µ, ξ0q as
an auction when convenient. As is always the case with direct mechanisms, the auction
encompasses both the game form and the equilibrium, i.e., by appealing to the revelation
principle we have implicitly selected the equilibrium.

Finally, as notation for later sections, for a set Θ of valuation profiles, define Θi �
max tθi : θi P Θiu to be the maximum possible value of bidder i; Θ�i to be the maximum
possible value of bidders j � i; and Θ � maxi

 
Θi

(
. We define Θi,Θ�i, and Θ as the

corresponding values for minima instead of maxima.

3 Strongly Shill-Proof Auctions

3.1 Direct Mechanisms

In this subsection, we first show that all strongly shill-proof auctions must be pay-as-bid
and then show that under an assumption that real bidders observe all past actions, we can
precisely pin down the Dutch auction as the the only strongly shill-proof auction.

16This revelation principle is similar to those found in, for example, Ashlagi and Gonczarowski (2018);
Mackenzie (2020); Mackenzie and Zhou (2022); Pycia and Troyan (2023).

17This notion of informativeness is very similar to the pruned condition from Akbarpour and Li (2020).
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Lemma 3.1 (Pay-as-bid). If an auction px̃, t̃, µ, ξ0q is strongly shill-proof, then it must be a
pay-as-bid auction. Formally, for all ξ, θξ, and θ�ξ, θ

1
�ξ,

x̃ξ pθξ, θ�ξq � x̃ξ
�
θξ, θ

1
�ξ

�
ùñ t̃ξ pθξ, θ�ξq � t̃ξ

�
θξ, θ

1
�ξ

�
.

The proof of Lemma 3.1 and all other results can be found in the Appendix. Observe that
Lemma 3.1 holds (as does Theorem 3.6) even if we relax the assumption on shill bidders’
information sets because strong shill-proofness means that shill bidders want to report 0
even if they know the precise valuations of other bidders ex-ante. To see why Lemma 3.1 is
true, consider the case where R � tξu. Then, the shill bidders will report whichever values
maximize t̃ξ and so t̃ξ must be constant across all outcomes with the same allocation.

Recall that with continuous types, two bidders have the same type with probability 0 and
the optimal allocation rule is uniquely defined up to measure-zero events. However, since
types are discrete, the probability of ties is non-zero and so we have to define a tie-breaking
rule. We adopt the notion of orderliness introduced by Akbarpour and Li (2020): there
exists a fixed priority order—independent of values—over which bidder wins an item if there
is a tie.18 We clarify their definition by explicitly linking the priority order to the ex-post
allocation rule.

Definition 3.2. An auction equilibrium pG, σq is orderly if there exists a total ordering ▷
over pθi, iq with the following properties: For all i and j,

(i) θi ¡ θj ùñ pθi, iq▷ pθj, jq;

(ii) if there exists m such that pθm, iq▷ pθm, jq, then for all k, pθk, iq▷ pθk, jq; and

(iii) for all θ, if x̃ipθq P t0, 1u and pθi, iq▷ pθj, jq, then x̃ipθq ¡ x̃jpθq.

We can now define the orderly allocation rule for any auction with reserve type θρ as

x̃ρi pθq � 1
!
θi ¥ θρ, pθi, iq � max

▷
tpθj, jqujPB

)
.

Then, the orderly, efficient allocation rule is x̃E � x̃1 and the orderly, optimal allocation rule
is x̃� � x̃ρ

�

for some ρ�.
We can now explicitly define the revenue-maximizing pay-as-bid bidding functions. Note

that we need to select among multiple IC bidding functions because the discrete type space
implies that the IC constraints need not bind with equality. Using Lemma B.2 from the
Appendix, the bidding function for bidder i is given by

b1i pθ
mq � θm �

¸
k:θk θm

pθk�1 � θkq

�
F pθkq

�i�1 �
F pθk�1q

�N�i�1

pF pθmqqi�1 pF pθm�1qqN�i�1
.

The transfer rule is then t̃E � b1 � x̃E and t̃� � b1 � x̃� for the efficient and optimal auctions,
respectively. Observe that the asymmetry in the bidding and transfer functions arises purely
from the discrete types and the tie-breaking rule, not from the definition of shill-proofness.

18For example, if ties are broken lexicographically, then the auction is orderly.
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3.2 Indirect Mechanisms

Now that we have pinned down the direct mechanism, we turn to the indirect implementa-
tion. The information structure available to real bidders matters for which mechanisms are
strongly shill-proof. If there is no information leakage between bidders, then the classic first-
price auction is strongly shill-proof. However, if any bidder can learn any outcome-relevant
information about another bidder’s actions, then the first-price auction is not strongly shill-
proof. In Section 3.3, we return to the primary setting studied in this work, public auctions.

To expand, the single-action, first-price auction where each bidder sequentially makes a
bid will be strongly shill-proof when the game is static, i.e., when each bidder takes her single
action with no information about what other bidders have done. However, we can show that
the single-action, first-price auction is strongly shill-proof only in static games—if there is
ever a chance that a bidder learns some outcome-informative information about what actions
previous bidders have taken, then the auction is no longer strongly shill-proof. Formally, in
an orderly auction, for some i, j, and θ with pθM , jq▷ pθi, iq▷ pθρ

�

, jq, let hθ be the (unique)
history reached in equilibrium by σpθ;Bq where P phq � j and let h0 be the corresponding
history reached by types p0, θ�iq. We say that an information structure is strictly more
informative than a static game if there exist i, j, and θ such that Iphθq � Iph0q and
x̃jpθq � 1. Note that if there exists such a type vector, then there must exist a type vector
where x̃jpθq � 0.

Proposition 3.3. Under a static information structure, the single-action, first-price auction
is strongly shill-proof. However, for any information structure strictly more informative than
a static game, the single-action, first price auction is not strongly shill-proof.

A core intuition underlying Proposition 3.3 is that the stronger a bidder perceives her
competition, the less she shades her bid in a first-price auction. So, if a shill bidder i is able
to distinguish that she has a value that could change the outcome of the auction to bidder j,
then there must be some value θj under bidder j perceives the auction as more competitive;
this is occurs if and only if there is outcome-relevant information leaked from bidder i to j.
This will increase revenue if j wins and so the first-price auction is not strongly shill-proof.

As noted in Section 2, implementing no information leakage (or, equivalently, simultane-
ity) between bidders is often an unrealistic assumption. Even with some technology that
might deter information leakage in the actual mechanism, information leakage through side
channels is inevitable in many settings. So, we take Proposition 3.3 as evidence therefore
that the first-price auction is, in many settings, potentially subject to manipulation by shill
bidders.

3.3 Dutch Auctions

Now that we have shown that the extensive form of an auction affects whether or not it is
strongly shill-proof, we turn to studying which extensive forms are always strongly shill-proof.
We show that Dutch auctions are strongly shill-proof, no matter the information structure,
and show that that there exists a natural information structure—the public setting—such
that Dutch auctions are uniquely strongly shill-proof.

To begin, we formally define the public information structure:
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Definition 3.4. An auction equilibrium pG, σq is public if the information set at any history
is all previous actions taken. Formally, for any history h, Iphq � thu.

Public auctions are common in practice: from open air fish markets, to auctions on eBay,
participants often can see every action other bidders take before choosing what to do.19 A
second interpretation of an auction being public is that all information is totally leakable: If
an auction is strongly shill-proof and public, then shill bidders can credibly signal to all other
bidders any actions they have taken in the auction and it will not affect the outcome. In
general, we believe that it is natural to assume that shill bidders actions are visible in settings
where considering shill bidding is important. Otherwise, shill bidding can only manipulate
the outcome ex-post, which differs from the normal interpretation of shill bidding and its
applications.

Next, we define the Dutch auction with reserve price θρ. The Dutch auction is defined as
the auction which begins by offering each bidder i the item at b1i pθ

Mq, and then if no bidder
chooses to buy the item at that price, the item is offered for b1i pθ

M�1q and so on until either
a bidder has chosen to buy the item or the price to be offered drops below b1i pθ

ρq. Note that
the optimal Dutch auction is the Dutch auction with reserve price θρ

�

. We consider only
orderly auctions and therefore, at each price level, bidders are offered the opportunity to
buy the item in priority order. Formally:

Definition 3.5. The Dutch auction with reserve price θρ is defined by the allocation
rule x̃ρ, first-price transfer rule t̃1 � x̃ρ � b1, initial player p�, ξ0q � max▷ tp0, iqu, and menu

µDρ pΘ, ξq �
!�
WL, ξ⃗L

	
,
�
WH, ξ⃗H

	)
,

where WH �
 
Θξ

(
,WL � Θξz

 
Θξ

(
, ξ⃗H � H, and

ξ⃗L �

#�
�, ξ̃

	
� max▷

 �
Θi, i

�
: i � ξ

(
Di � ξ such that |Θi| ¡ 1 and Θi ¥ θρ

H otherwise
.

Theorem 3.6. A Dutch auction with any reserve price is strong shill-proof. Furthermore,
if a public, orderly and optimal auction is strongly shill-proof, then it is the Dutch auction
with reserve price θρ

�

.

Proof Sketch. The Dutch auction is strongly shill-proof because any shill bid immediately
ends the auction—and in that case there would be no transfers from other bidders. To gain
an intuition for why uniqueness holds, note that the key defining property of the Dutch
auction is that any bid immediately ends the auction. Then, we prove the result in four
cases. First, we consider an auction where the player rotation differs from a Dutch auction;
we then show that if a shill bidder indicates she has the highest possible remaining value, this
has the effect of ex-interim increasing the effective reserve price. Since the auction is public
and only the highest value is allocated, when the types are realized so that some bidder
with a higher priority order has the same value (and non-shill bidders have a low value),

19Non-examples of public auctions include the FCC spectrum auctions, where bidders typically only learn
information on other bidders’ actions in rounds (see Milgrom and Segal (2017) for more information).
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raising the reserve must increase revenue from the winning bidder.20 The next case considers
what happens when bidders are queried in priority order, and the minimum of a partition is
greater than the reserve price, but less than the highest value of other bidders. This raises
the ex-interim reserve price and so by the same argument as above, shill bidding is profitable.
In the third case, we consider what happens when the minimum in the partition is equal to
the highest value of other bidders. By construction, this can only occur when a bidder is the
lowest priority and so, applying our orderliness assumption, this raises the ex-interim reserve
to be the highest type still possible in equilibrium for other bidders without immediately
allocating the good to the shill bidder. We can then apply the same argument as the first
two cases to conclude that shill bidding would be profitable in this case. In the final case, we
consider an auction where the minimum in the partition is below the reserve price. In this
case, the ex-interim reserve has not changed, so the logic from the previous cases does not
apply. Instead, shill bidding in this case makes it appear as if there is more competition for
the item, and we prove that this causes “less bid shading,” i.e., higher final transfers from
the winner.

Observe that although the standard intuition about shill bidding is that its’ purpose is to
influence other bidders’ perception about the common value for an item, Theorem 3.6 shows
that just being able to influence other bidders perception about the probability they win
the item without directly winning the item in a single case is enough to limit the number
of possible auction formats to just Dutch auctions. Moreover, under public information,
such a case always exists for non-Dutch auctions. The public information structure is the
most informative, while a static information structure is the least informative. We show in
the Supplemental Appendix that as the information structure becomes less informative, the
number of strongly shill-proof auctions weakly increases (Proposition E.3).

4 Weakly Shill-Proof Auctions

In Lemma 3.1, we demonstrate that strong shill-proofness uniquely pins down the transfer
rule; and in Theorem 3.6, we demonstrate that once we consider public auctions, we uniquely
pin down the extensive form as well. In this section, we turn to studying our more permissive
definition, weak shill-proofness, and first show the limits of possible extensive forms that are
weakly shill-proof and then exhibit extensive-form auctions that are weakly shill-proof and
strategy-proof, including a new auction format that can be arbitrarily faster than the English
auction.

4.1 Trilemma

In this subsection, we prove that it is impossible to find an auction that is weakly shill-proof,
strategically simple for even one of the real bidders, and fast in the sense that each bidder
takes exactly one action. To make this trilemma as general as possible, we do not even

20If the auction were not public, then real bidders’ beliefs might not change ex-interim and so their transfers
might not change either. For example, in a sealed first-price auction, a shill bidder’s actions have no effect
on the transfers of other bidders.
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require the auction to be optimal or efficient. Instead, we are only using condition (iii) of
our orderliness definition (Definition 3.2), which requires that a bidder who does not have
the highest type must not win the item. Note that such a condition is without loss for any
symmetric and deterministic mechanism.

We begin by defining a single-action auction. An auction is considered single-action
when each bidder takes precisely one action in the auction (under all possible histories).
More formally, for any hN P Z, let hH   h1   . . . hN�1   hN be the sequence of preceding
histories. Then, an auction is single-action if for all i P B, there exists a unique n ¤ N
such that i � P phnq. Without loss, we label the bidders 1, . . . , N , in the order that they
move and label the action taken by bidder i as ai.

21

For expositional purposes, instead of tracking the information set Ii of a bidder i P R,
we assume that the information i has when taking an action is a signal si P Si. This signal
is generated via a deterministic function ψi :

��
j iAj

	
Ñ Si called an experiment.22

For notational convenience, we assume that ψi is surjective for all i. We can think of the
experiment as a garbling of the previous bidders’ actions—the experiment can pool together
multiple actions from previous bidders to a single signal and so a signal is not always perfectly
informative of previous actions. We can recover the public setting with a fully informative
experiment, i.e., ψ � Id, the identity mapping. We can capture classical static game settings
via an uninformative experiment that always returns the same output, ψ � H. We use
ψ�1
i psiq to denote the set of θ�i that are possible from the perspective of bidder i given its

signal.
A revelation principle holds in this setting: for any single-action auction, we can define

the direct allocation and transfer rules as x̃pθq and t̃pθq, respectively, with the appropriate
incentive compatibility and individual rationality constraints for real bidders (Lemma C.1
in the Appendix), and appropriate IC constraints for weak and strong shill-proofness (Lem-
matta C.2 and E.13, respectively, in the Appendix).

To finish defining all the terms necessary for our main result of this section, we formally
define ex-post incentive compatibility and then give a weaker notion of ex-post incentive
compatiblility in the single-action auction setting: ex-post incentive compatiblility for at
least a single bidder.

Definition 4.1. An auction px̃, t̃, µ, ξ0q is ex-post incentive compatible if it is an ex-post
strategy for real bidders to report their values truthfully: for all real bidders i P R, θ, and
θ1i,

x̃pθq � θi � t̃pθq ¥ x̃pθ1i, θ�iq � θi � t̃pθ
1
i, θ�iq.

Definition 4.2. A single-action auction px̃, t̃, µ, ξ0q is mildly ex-post incentive compat-
ible if there exists a real bidder i   N such that truthfulness is an ex-post strategy for i
conditional on the realization of her signal: there exists bidder i   N , such that for all θi,
θ1i, si, and θ�i, θ

1
�i P ψ

�1
i psiq: x̃ipθq � θi � t̃ipθq ¥ x̃i pθ

1q � θi � t̃i pθ
1q.23

21The bidder ordering and therefore the labeling can be endogenous to actions taken.
22Abusing notation, we also sometimes take ψi : ϑ

i�1 Ñ Si, i.e., the experiment maps values to signals
instead of actions.

23We exclude the last bidder who takes an action from our definition because a take-it-or-leave-it offer to
that bidder can be optimal and ex-post incentive compatible. Theorem 4.3 would still hold if we instead
defined mild ex-post incentive compatiblility to mean ex-post incentive compatible for at least two bidders.
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Theorem 4.3. There exists no orderly auction that is single-action, mildly ex-post incentive
compatible, and weakly shill-proof.

Proof Sketch. Consider any real bidder i   N . By weak shill-proofness, the transfer from
bidder i, conditional on winning (or losing) the auction, is invariant to the values of bidders
who take actions after her (Lemma C.3 in the Appendix). If this were not the case, then
if every bidder j ¡ i is a shill bidder, the shill bidders would report the values that would
maximize the transfer from the winning bidder. By mild ex-post incentive compatiblility,
the transfer from bidder i, conditional on winning the auction, is invariant to her value
(Lemma C.4 in the Appendix). This is because if there were multiple winning reports with
different transfer amounts, only the smallest transfer amount would make truthful reporting
of the value an ex-post strategy. So, in every single-action, optimal auction, the transfer
from the winning bidder i, can depend only on the values reported by bidders before i. But,
this means that if a bidder has positive utility for winning the item (as would be the case
if θi ¡ θj for all j   i), then she should report θM to maximize the probability of winning
(without changing the transfer paid upon winning). Thus, the auction must treat bidder i
as if she reported θM , which violates the allocation rule of an optimal auction.

Observe that while there are no auctions at the intersection of all three conditions in
Theorem 4.3, we can find multiple auctions at the intersection of any two of those conditions.
For example, assuming an IPV and regular (Definition 4.4) environment, the second-price
auction is single-action and mildly ex-post incentive compatible; the first-price auction is
single-action and weakly shill-proof; and the English auction is mildly ex-post incentive
compatible and weakly shill-proof. None of the examples just described are unique; there
exist other single-action and mildly ex-post incentive compatible auctions, single-action and
weakly shill-proof auctions, and mildly ex-post incentive compatible and weakly shill-proof
auctions.

4.2 Other Weakly Shill-Proof Auctions

Now that we have shown an impossibility result regarding weakly shill-proof auctions, in
this subsection, we will provide some characterization results for weakly shill-proof auctions.
Recall from the introduction that even in an IPV environment, an English auction need not
be weakly shill-proof when the type distribution is irregular. So, for tractability, for the rest
of this subsection, we suppose that bidders have IPV types and regular type distributions.
We use the definition of regularity for discrete types found in Elkind (2007):

Definition 4.4. A distribution F is regular if for all k, the virtual value φk � θk�pθk�1�

θkq1�F pθ
kq

fpθkq
is non-decreasing.

4.2.1 Weakly Shill-Proof and Efficient Auctions

To further analyze when concerns about shill-bidding lead to Dutch auctions, we now examine
the case of efficient auctions. Shill bidding is important to consider in the efficient auction
context because the designer may be interested in allocating goods efficiently even while
sellers are trying maximize revenue. For example, in two-sided marketplaces like eBay,
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the auctioneer/market designer places positive welfare weight on both buyers and sellers,
whereas sellers typically do not—and sellers may certainly try to shill bid in these settings,
as discussed in the Introduction. Our next result shows that in order for an auction to be
robustly weakly shill-proof and efficient, part of its game tree must be a Dutch auction. If
an auction is not robustly weakly shill-proof, we mean that we can find a value distribution
such that the auction is not weakly shill-proof. More formally, if the auction px̃, t̃, µ, ξ0q is
parameterized by the optimal reserve θρ

�

, the number of atoms below the reserveM and the
number of atoms weakly above the reserve M ,24 then the following result holds.

Definition 4.5. An efficient auction px̃E, t̃, µ, ξ0q is a semi-Dutch auction with cutoff
θρ

�

if for any v such that maxi tviu   θρ
�

:

(i) qΘ �  
w : w   θρ

�
(N

is reached; and

(ii) µpΘ, ξq � µDpΘ, ξq for any player ξ and possible values Θ � qΘ where µD is the menu
rule for the Dutch auction with reserve price 0 from Definition 3.5.

Proposition 4.6. For every public and efficient auction that is not a semi-Dutch auction
with cutoff θρ

�

, there exists a regular value distribution with optimal reserve θρ
�

under which
the auction is not weakly shill-proof.

The key step in the proof of Proposition 4.6 resembles the proof of Theorem 3.6—in any
non-Dutch auction, shill bidders can ex-interim “raise the reserve price” by changing their
actions. However, given that we are interested in weak shill-proofness instead of strong shill-
proofness, we have to examine shill bidders’ incentives when we take expectations over real
bidders’ values instead of conditioning directly on their values. Regularity implies that
above θρ

�

, shill bidders do not have an incentive to shill bid in auction formats such as
the English auction (see Section 1.1). However, below θρ

�

, we can always find a regular
distribution such that the ex-interim expected value of raising the reserve price is always
positive; in particular, we can find a value distribution where the atoms are far enough
apart that raising the reserve price a single “level” generates a large amount of additional
revenue. In the Appendix, we construct the claimed sub-class of regular distributions (see
Definition C.5). So, below θρ

�

, the auction must resemble the Dutch auction; the class of
all such auctions is precisely all semi-Dutch auctions with cutoff θρ

�

. In the Supplemental
Appendix (Example E.5), we provide an example of an auction format that is not semi-Dutch
and that is weakly shill-proof for some value distributions but not others; and the following
example presents a real-world setting that roughly fits the premises of Proposition 4.6 where
a semi-Dutch auction (that is not a Dutch auction) is used.

Example 4.7. The Honolulu-Sydney fish auctions and Istanbul flower auctions documented
by Hafalir et al. (2023) blend elements of the Dutch and English auctions: The auction begins
at some intermediate price and if anyone bids, then the price ascends like in the English
auction. If no one bids, the price descends until someone bids like in the Dutch auction.25

24Here, M �M �M .
25Honolulu-Sydney auction, once someone bids, other bidders can counter-bid and raise the price once

more. However, in practice there is little counter-bidding. On the theoretical side, in an IPV setting, there
exists an equilibrium where there is no counter-bidding. Counter-bidding once the Dutch auction starts is
not allowed in the Istanbul flower auction.
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The Honolulu-Sydney auction plausibly fits the technical assumptions made in Proposi-
tion 4.6: The auctions are public, as they take place in person and all bidders can see other
bidders’ actions. Market participants are interested in efficient outcomes because the goods
are perishable and there are positive disposal costs for the sellers. We do not mean to imply
that the Honolulu-Sydney auction was instituted precisely because it is shill-proof, but we
highlight it as further evidence that in markets where it is difficult to monitor shill bidding,
shill-proof mechanisms may arise.

Note that Proposition 4.6 relies on the auction format being able to condition on the true,
optimal reserve. If we instead require the auction format to be completely prior-independent,
then the only public, efficient, and weakly shill-proof auction is the Dutch auction.

Corollary 4.8. For any public and efficient auction that is not a Dutch auction, there exists
a regular value distribution under which the auction is not weakly shill-proof.

Proof. Observe that a semi-Dutch auction with cutoff θρ
�

� θM is simply a Dutch auction.
Then, apply Proposition 4.6 for a regular distribution with optimal reserve θρ

�

� θM .

4.2.2 Weakly Shill-Proof and Strategy-Proof Auctions

We have shown that the only optimal auction with a feasible equilibrium for real bids and an
ex-post strategy for shill bidders not to shill (strong shill-proofness) is the Dutch auction. We
now investigate the dual question: what optimal auctions have an ex-post strategy for real
bidders (ex-post incentive compatiblility) and an equilibrium under which no shill bidding
occurs (weak shill-proofness)?

An optimal auction is ex-post incentive compatible if and only if has the second-price
transfer rule (Akbarpour and Li, 2020, Proposition 8):

t̃2i pθq � x̃�i pθq �max
!
θρ

�

, second-highest value in tθ1, . . . , θNu
)
.

Note that if a shill bidder knew the valuations of all other bidders, then shill bidding would
turn a second-price auction into a first price auction, which bounds the expected profit
for a shill bidder from shilling. So, in order to find a ex-post incentive compatible and
weakly shill-proof auction, we must find a menu rule that implements a second-price auction
where the expected gain from shill bidding is sufficiently small at shill bidders’ information
sets. As discussed in Section 1.1, for regular value distributions, one weakly shill-proof,
ex-post incentive compatible, and optimal auction is the English auction. We formalize the
English auction in our framework as follows:

Definition 4.9. The English auction with reserve price θρ
�

is defined as the auction
with the optimal allocation rule x̃�, second-price transfer rule t̃2, initial player p�, ξ0q �
min▷ tp0, iquiPB, and menu

µEpΘ, ξq �
!�
WL, ξ⃗L

	
,
�
WH, ξ⃗H

	)
,

where WL �
!
θ P Θξ : θ   θρ

�
)
Y
 
Θξ

(
,WH � ΘξzWL,

ξ⃗L � ξ⃗H �

#�
�, ξ̃

	
� min▷

 
pΘi, iq : i � ξ,Θi � θM , |Θi| ¡ 1

(
Θ�ξ � θM

H otherwise
.
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Remark 4.10. The English auction with reserve price θρ
�

is weakly shill-proof, ex-post
incentive compatible, and optimal (when the value distribution is regular). Depending on
the information bidders have when taking actions, that auction can also be made dominant-
strategy.26

The English auction is not the only ex-post incentive compatible and weakly shill-proof
auction. While the English auction is used frequently, one drawback is that it is “slow”—
each bidder can be queried on their willingness-to-pay on the order of M times. Specifically,
let QEpF q � M � ρ� � 1 be the worst-case number of times a bidder must be queried. To
explore whether there are weakly shill-proof and ex-post incentive compatible auctions that
require fewer rounds of communication, we introduce a natural “compression” of the English
auction that comprises the following two phases:

1. An English auction is run from θρ
�

to some θY .

2. If necessary, a second-price auction is then run among players who have not dropped
out before the value level of θY .

Definition 4.11. The ascending, screening auction with screen level θY is defined by the
optimal allocation rule x̃�, second-price transfer rule t̃2, initial player p�, ξ0q � min▷

 �
Θi, i

�(
,

and menu

µpΘ, ξq �

$&%µ
EpΘ, ξq Di such that Θi ¤ θY and Θi � θM!� 
θk
(
, ξ⃗ k

	)
kPtY�1,...,Mu

otherwise
,

where
�
�, ξ⃗ k

	
� max

▷

 
p0, iq : |Θi| ¡ 1,Θi � θY

(
for k  M and ξ⃗M � H.

The ascending, screening auction reduces the maximum number of times each bidder can
be queried to QAS,Y pF q � Y �ρ��2. Because the transfer rule is t̃2, the ascending, screening
auction is ex-post incentive compatible and optimal.

We use the ascending, screening auction format to explore how fast a weakly shill-proof,
ex-post incentive compatible and optimal auction can be, as a function of the underlying value
distribution. Our next result shows that the ascending, screening auction can be weakly shill-
proof, ex-post incentive compatible, optimal, and take an arbitrarily small fraction of queries
as compared to the English auction depending on the value distribution:

Proposition 4.12. For all ε ¡ 0, there exists a value distribution F and screen level θY

such that QAS,Y pF q{QEpF q   ε and the ascending, screening auction with screening level θY

is weakly shill-proof, ex-post incentive compatible, and optimal.

The ascending, screening auction is orderly and optimal by construction; and it is ex-
post incentive compatible because the English auction phase and the second-price phase
both induce the same (ex-post incentive compatible) allocation and transfer rule. The larger
θY is, the less that can be extracted in expectation from shill bidding and the more likely
it is that a shill bidder will win the item if she shill bids. We provide a sufficient minimum

26See Section 6.2 for a discussion of how our results translate into dominant-strategy contexts.
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bound on θY based on a few moments of a distribution (not its number of atoms), such
that for distributions with “thin-enough” right tails—in particular monotone hazard rate
distributions—the ascending, screening auction is weakly shill-proof (Lemma C.10). We can
then construct a sequence of distributions with increasing numbers of atoms and constant
θY to complete the proof. The distributional requirements we need here differ from the class
we find to prove Proposition 4.6, demonstrating that designing weakly shill-proof auctions
has rich interactions with properties of the prior distribution.

5 Affiliation, Interdependent Values, and Shill-Proofness

In this section, we generalize our model to allow for interdependent values and a more general
distribution of shill bidders. We will then show that shill-proofness admits an order with
respect to the type distribution and value function: the higher the level of affiliation and
level of common values that is present in the environment, the harder it is for an auction
format to be shill-proof, either weakly or strongly. Next, we show that Lemma 3.1 holds
under our general model and pins down the optimal allocation rule for strongly shill-proof
auctions in affiliated environments. Finally, we show that our main results (Theorems 3.6
and 4.3) still hold under our more general model.

5.1 Generalized Model

We maintain the assumptions that there is a set of potential bidders B, with |B| � N ,
who might participate and that the seller’s value is commonly known to be 0. We also
maintain our previous assumptions on real and shill bidder utilities and information sets.
However, instead of assuming that each potential bidder has probability p of participating,
we instead assume that the set of real bidders is drawn symmetrically and randomly, i.e.,
for any R1, R2 � B, if |R1| � |R2|, then P rR � R1s � P rR � R2s. For parsimony, we also
assume full support, but the probability of certain sets of real bidders can be arbitrarily
small; this rules out mechanisms that condition on large coalition of bidders in unusual ways
in order to become weakly shill-proof.27 Letting the probability of certain realizations go
to zero (or relaxing the full support assumption entirely), this treatment of the set of shill
bidders nests many natural models of shill bidders. For example, it nests a model of shill
bidding where there is at most or exactly one shill bidder. It also nests our model of shill
bidding from Section 2 where each bidder has an i.i.d. chance of being a real bidder.

In our general model, we interpret the type θi P ϑ to flexibly represent both a private
value for the item and a signal of the common value for the item. We will expand on exactly
how the type enters the valuation for real bidders below. As notation, for each shill bidder
i P S, we assign their type to be θi � 0 to represent them having the lowest possible valuation
for the item. Then, we can say types are jointly drawn from a full-support, symmetric F
and we define fpθq � Pw�F rw � θs to be the pmf of the distribution. We assume that the
type distribution is affiliated in the Milgrom and Weber (1982) sense: For all θ, θ1 P ϑN ,

log fpθ _ θ1q � log fpθ ^ θ1q ¥ log fpθq � log fpθ1q.

27Our results for strong shill-proofness do not require a full support distribution over shill bidder sets.
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Affiliation captures the idea that types are positively correlated: the probability of types/signals
all being high or low is higher than the probability of some signals being high and some being
low.

There is a value function v : ϑ� ϑN�1 Ñ R such that for each bidder i, her value for the

item is v
�
θi, tθjuj�i

	
; note that this form implies that bidders have symmetric preferences

over the types of other bidders. We also make a few functional form restrictions on v below.

Assumption 5.1. The value function v for a bidder satisfies the following properties:

(i) For all k, vpθk, 0q � θk;

(ii) v is weakly increasing in θ�i;

(iii) If θi ¥ θj, then v
�
θi,

 
θj, θ�pi,jq

(�
¥ v

�
θj,

 
θi, θ�pi,jq

(�
; and

(iv) For all θ such that θi ¥ maxj�i tθju, v is weakly super-modular and has weakly de-
creasing differences.

Condition (i) is a (without loss) normalization conditional on the other parts of the as-
sumption. Condition (ii) means that θ encodes common value preferences—a bidder values
an item more when other bidders value it more. Condition (iii) means that bidders value
their own high-type realizations more than they value high-type realizations for other bid-
ders. (This is the standard single-crossing assumption needed for a responsive, incentive
compatible mechanism to exist.) Condition (iv) means that conditional on having the high-
est ex-ante signal of value, a bidder has higher value for other bidders’ signals whenever her
type is high and has diminishing marginal returns to high signals.

Note that the standard, private values setting where for all θ, v pθi, θ�iq � θi satisfies
Assumption 5.1. Most other value functions in the literature also satisfy these conditions;
for example, generalized, additive, interdependent values vpθq � θi � κ

°
j�i θj with κ ¤ 1

and maximum common values vpθq � maxi tθiu.

5.2 Shill-Proof Order

To prove that increasing the level of affiliation and interdependence of values makes it more
difficult for an auction to be shill-proof, let us begin by formally defining what it means
for the value distribution to be “more affiliated” and for the value function to be “more
commonly valued.”

Definition 5.2. Consider two distributions F, F 1 P ∆pϑNq such that all marginal distri-
butions are the same: Fi � F 1

i , for all i. A distribution F 1 is more affiliated than F ,
F 1 ©Aff F , if for all x, y P ϑ

N , log f 1px_ yq � log f 1pxq ¥ log fpyq � log fpx^ yq.

Our definition of the affiliation order is standard and from Karlin and Rinott (1980).
When F 1 ©Aff F , values between bidders are more highly correlated under F 1 than F .
We fix the marginal distributions to emphasize that our definition focuses on the correlation
between bidders and not the relative strength of the distributions. All affiliated distributions
are more affiliated than the type distribution where bidders are independent: If F is affiliated,
then F ©Aff

±
i Fi.
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Definition 5.3. A value function v1 is more commonly valued than v, v1 ©Com v, if v1 is
weakly more super-modular than v and for all θ, v1pθq ¥ vpθq.

The point-wise comparison in Definition 5.3 makes sense because v, v1 are normalized so
that vpθk, 0q � v1pθk, 0q � θk—and therefore the point-wise comparison means that other
bidders’ signals are valued more as the value function becomes more commonly valued. The
increase in super-modularity means that we also require types to be more complementary
when we say that the value function is more commonly valued. We view this as reasonable
because if signals became less complementary, there would exist v1 ©Com v such the marginal
change in bidder i’s value based on her own type would be less under v1 than under v. Any
value function v satisfying Assumption 5.1 is more commonly valued than the value function
vprivatepθi, θ�iq � θi arising under the private values model.

Letting t̃�px̃, µ, ξ0, v, F q be defined as some optimal transfer rule conditional on the
extensive-form game and the primitives of the environment, we are now in position to for-
mally state our main result for this section:

Theorem 5.4. Consider affiliated type distributions F and F 1, and value functions v and v1

satisfying Assumption 5.1. Suppose px̃, t̃�px̃, µ, ξ0, v, F q, µ, ξ0q is orderly and strongly shill-
proof. Then, if v1 ©Com v and F ©Aff F 1, it is the case that px̃, t̃�px̃, µ, ξ0, v

1, F 1q, µ, ξ0q is
strongly shill-proof. The same statement holds for weak shill-proofness.

Proof Sketch. To begin the proof sketch, let us first observe that the ex-interim transfers from
each bidder is pinned down based on the ex-interim allocation rule via a bidder’s incentive
compatibility constraint.

Lemma 5.5. For every auction px̃, t̃�px̃, µ, ξ0, v, F q, µ, ξ0q, the ex-interim transfer rule for
bidder i is

Tipθi; Θq � Xipθi; Θqv
�pθi, θiq �

¸
m:θjm θi

Xipθ
jm ; Θq � pv�pθjm , θjm�1 ; Θq � v�pθjm , θjm ; Θqq,

where v�i pθ
k, θk

1

; Θq � E
�
vpθk, θ�iq | θi � θk

1

, θ�i P Θ�i, x̃ipθ
k, θ�iq � 1

�
is the expected value of the item for bidder i of type θk

1

conditional on winning the item and
playing as if she were type θk and tθjmum are the ordered atoms of Θi.

Note that feasibility normally pins down the transfer rule via the envelope theorem. How-
ever, we are working with discrete types instead of continuous types and so the incentive
compatibility constraint is slackened as the change in allocation probability from misreport-
ing is discrete. So, we use optimality to select among this multitude of ex-interim transfers
that maintain incentive compatibility. (This is an adaptation of the standard envelope the-
orem formulation of ex-interim transfers adapted to the extensive-form game by noting that
if, at any point in the game, Ti does not take this form, there exists a profitable deviation
by bidder i to commit to acting as a lower type throughout the rest of the game.)

Next, we prove the following technical lemma.

Lemma 5.6. Consider sets S and S 1 such that S X S 1 � H and minvPS tvu ¡ minvPS1 tvu.
Then, for any weakly super-modular, non-decreasing function g with decreasing differences,
if F 1 ©Aff F , then for all i,

Eθ�F 1 rgpθq | θi P Ss�Eθ�F 1 rgpθq | θi P S
1s ¥ Eθ�F rgpθq | θi P Ss�Eθ�F rgpθq | θi P S

1s . (1)
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The proof then proceeds by contrapositive for affiliation and then common values. We
consider that the auction is not weakly shill-proof for distribution F and consider F 1 ©Aff

F . We show that if there exists a profitable deviation under F , then that same deviation
must be profitable under F 1. Any profitable deviation either manipulates a bidder’s ex-
interim expected transfer or ex-post manipulates her payment. Given that we have fixed the
extensive form, any deviation that is possible under pv, F q is possible under pv1, F 1q. So, ex-
post manipulation will be profitable under both and so we only need to consider ex-interim
manipulations. We can re-write expected profit of deviation as the difference between the
expectation of a sum taken over the true and manipulated type reports. We show that the
sum satisfies the conditions of Lemma 5.6 and so we can conclude that deviating increases
profits. Note that the probability that bidder i wins the item is constant between the two
type distributions because the allocation rule is held constant and so we have shown that
the auction is not weakly shill-proof under F 1. The argument when strongly shill-proof is
the exact same. The proof when considering common values is also by contrapositive. In
this case, we apply the fact that v1 is more super-modular and point-wise larger to directly
conclude that the profit from the deviation is larger.

5.3 Extending our Characterizations

We can now use Theorem 5.4 to generalize our main characterization results from previous
sections. To begin, we observe that while we know the optimal allocation rule in an IPV
environment and the revenue equivalence theorem implies that any transfer rule yields the
same revenue, the same need not hold with interdependent values and affiliation. So, we
must simultaneously search for an allocation and transfer rule that satisfies our desiderata.

In order to find the optimal allocation and transfer rules, we first pin down the transfer
rule and then the allocation rule. Our proof of Lemma 3.1 holds in our general environment
and so strong shill-proofness implies that the transfer rule must be pay-as-bid. Then, having
pinned down the transfer rule, we can see first that the unconstrained efficient allocation is
feasible, and also that in the optimal auction we will never want to allocate to a bidder who
does not have the highest type. Thus, we can solve the monopolist screening problem to find
the optimal reserve in this auction. The formal result is as follows.

Proposition 5.7. Under any affiliated distribution and value function satisfying Assump-
tion 5.1, if an auction px̃, t̃, µ, ξ0q is strongly shill-proof, then it is pay-as-bid: For all ξ, vξ,
θ�ξ, and θ

1
�ξ,

x̃ξ pθξ, θ�ξq � x̃ξ
�
θξ, θ

1
�ξ

�
ùñ t̃ξ pθξ, θ�ξq � t̃ξ

�
θξ, θ

1
�ξ

�
.

All efficient mechanisms have an allocation rule such that¸
i

x̃Ei pθq � 1 and i R argmax
j

tθju ùñ x̃Ei pθq � 0.

All optimal mechanisms have an allocation rule such that¸
i

x̃�i pθq �

#
1 maxj tθju ¥ θρ

�

0 otherwise
and i R argmax

j
tθju ùñ x̃Ei pθq � 0

for some θρ
�

.
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We can now generalize Theorem 3.6. Modifying the transfer rule in the Dutch auction
to be the appropriate pay-as-bid rule, the following corollary holds.

Corollary 5.8. Under any affiliated type distribution and value function satisfying Assump-
tion 5.1, the statement of Theorem 3.6 holds.

Proof. The proof that any Dutch auction is strongly shill-proof is the exact same as in the
IPV case. By Proposition 5.7, we know what the orderly and optimal allocation rule is. By
Theorem 3.6, we know that in the IPV case, no non-Dutch auction will be strongly shill-
proof. We then apply Theorem 5.4 to conclude that all non-Dutch auctions are not strongly
shill-proof and optimal in general.

Many of our results for weakly shill-proof auctions continue to hold in our general model
when we restrict to optimal transfer rules. The generalization of Theorem 4.3 is as follows.

Corollary 5.9. Under any affiliated type distribution F and value function v satisfying As-
sumption 5.1, there exists no orderly auction px̃, t̃�px̃, µ, ξ0, v, F q, µ, ξ0q that is single-action,
mildly ex-post incentive compatible and weakly shill-proof.

Proof. Applying Theorem 5.4 to Theorem 4.3 with a restriction on possible transfer rules
completes the proof.

While regularity is not as applicable with affiliation, our robustness result (Corollary 4.8)
for the Dutch auction still hold.

Corollary 5.10. Under any affiliated type distribution F and value function v satisfying
Assumption 5.1 and for any public and efficient auction px̃, t̃�px̃, µ, ξ0, v, F q, µ, ξ0q, if the
auction is not a Dutch auction with reserve price 0, there exists a value distribution under
which the auction is not weakly shill-proof.

Proof. Since the Dutch auction with reserve price 0 is strongly shill-proof, it must be weakly
shill-proof. We then apply Theorem 5.4 to Corollary 4.8 to rule out any other auction format
being robustly weakly shill-proof and complete the proof.

We conclude this section by observing that Proposition 4.12 does not necessarily hold in
the general model. In fact, as we mentioned in the introduction, even the English auction is
not necessarily weakly shill-proof under an IPV type distribution if the distribution is not
regular. We leave as a future research question to find conditions on type distributions such
that some strategy-proof and weakly shill-proof mechanism exists.

6 Discussion

6.1 Shill-Proofness vs. Credibility

As discussed in the review of literature, another notion of “cheating” by the auctioneer
is that of in-credibility introduced by Akbarpour and Li (2020). An auction is credible
if a revenue-maximizing auctioneer has no incentive to lie about what other players are
doing. That information environment differs from this paper because we assume that bidders
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correctly (though perhaps not fully) perceive the actions of other players and where in the
game tree they are. In the Online Appendix, we formally define credibility in our setting
(Definition E.8) and prove the following implications:

Proposition 6.1. Suppose pG, σq is an orderly auction. If the auction is strongly shill-proof,
then it must be credible. If the auction is credible, then it must be weakly shill-proof.

We also define ψ-credibility for single-action auctions (Definition E.10) as a generalization
of credibility allowing for bidders to have exogenous signals (where ψ is our notation from
Section 4.1) about the actions of other bidders as well as additional communication from
the auctioneer. Recall that we defined ψ � Id to mean that the signals reveal the actions
of previous bidders and ψ � H to be static auction setting. We prove that the implica-
tions of Proposition 6.1 still hold and give conditions under which credibility coincides with
strong and weak shill-proofness:

Proposition 6.2. Suppose pG, σq is a single-action, orderly auction. If the auction is
strongly shill-proof, then it must be ψ-credible. If it is pψ � Hq-credible, then it is strongly shill-
proof. If the auction is ψ-credible, then it must be weakly shill-proof. If it is weakly shill-proof,
then it is pψ � Idq-credible.

Proposition 6.2 implies that Theorem 4.3 is a generalization of the credibility trilemma
(Akbarpour and Li, 2020, Theorem 1).

6.2 Dominant Strategies

This paper focuses on ex-post strategies. However, all our results can be extended to dom-
inant strategies as well. To extend Theorem 3.6 from an ex-post strategy not to shill to a
dominant strategy is straight-forward: shill bidding in the Dutch auction always leads to 0
revenue, which means it is a weakly dominated strategy, regardless of what other bidders do.
Further, since there exist no other auctions besides the Dutch auction that have an ex-post
strategy not to shill bid, there can exist no other auction with a dominant strategy not to
shill bid.

To extend Proposition 4.12 from an ex-post equilibrium to a dominant strategy equi-
librium for real bidders, some care must be taken in considering the information sets of
different bidders when they take actions. However, we can provide dominant-strategy equi-
libria versions of the English and ascending, screening auctions by assuming bidders move
simultaneously each round of the English auction, as well in the second-price auction phase
of the ascending, screening auction. Theorem 4.3 holds if we were to instead consider dom-
inant strategies for real bidders as dominant strategy incentive compatibility is a stronger
condition than ex-post incentive compatibility.
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A Model (Section 2) Appendix

Definition A.1. Consider any set of real bidders R and tuple pG, σq. We restrict the set of
potential deviations for shill bidders to

ΣS � tσ
1
S : @θ�S, DθS such that pσ1S, σ�Spθ�Sqq � σpθS, θ�S;R � Bqu .

Then, the tuple pG, σq is an auction equilibrium if for all i P R and deviating strategies
σ1i,

Eθ1
�i,R̃

�
ui

�
σ
�
θi, θ

1
�i; R̃

		�
¥ Eθ1

�i,R̃

�
ui

�
σ1i

�
θi, θ

1
�i; R̃

	
, σ�i

�
θi, θ

1
�i; R̃

		�
,

and for all i P S and σ1S P ΣS,

Eθ1
�S

�
ui
�
σ
�
0, θ1�S;R

���
¥ Eθ1

�S

�
ui
�
σ1S

�
0, θ1�S;R

�
, σ�S

�
0, θ1�S;R

���
.

In Definition A.1, the strategy space ΣS is restricting shill bidders to only take actions
that could be played on-path by a real bidder. In other words, shill bidders must act “as-
if” they are real bidders and not take any actions that would definitively prove that they
are shill bidders. This restriction allows us to move to a direct mechanism where shill-
proofness is defined as it being an equilibrium (ex-interim for weak shill-proofness, ex-post
for strong shill-proofness) for all shill bidders to report 0. Note that if we were to enlarge the
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strategy space ΣS to be the set Σ̂S of all strategy profiles, are main results would not change.
For Theorem 3.6, Proposition 4.6, and Proposition 4.12, we are focused on augmented direct
games and in such games ΣS � Σ̂S. For Theorem 4.3, we know that ΣS � Σ̂S and our
impossibility result must still hold if the set of possible deviations by shill bidders is larger;
thus, the theorem still holds.

Before we state our revelation principle in this context, we recall (with slight modification
of notation) a definition and result from Akbarpour and Li (2020) that will be helpful in the
proof.

Definition A.2 (Akbarpour and Li (2020), Definition 2). A game equilibrium pG, σq is
pruned if, for any history h:

(i) There exists θ such that h ¨ zpσpθ;Bqq.

(ii) If h R Z, then |succphq| ¥ 2.

(iii) If h R Z, then for i � P phq, there exists θi,θ
1
i, and θ�i such that

(a) h   zpσpθ;Bqq,

(b) h   zpσpθ1i, θ�i;Bqq, and

(c) px, tq pσpθ;Bqq � px, tq pσpθ1i, θ�i;Bqq.

Lemma A.3 (Akbarpour and Li (2020), Proposition 1). If pG, σq is a game equilibrium,
then there exists a game equilibrium pG1, σ1q that is pruned and for all θ, px, tq pσpθ;Bqq �
px1, t1q pσ1pθ;Bqq.

Lemma A.4 (Augmented Revelation Principle). For every game equilibrium pG, σq there
exists an auction px̃, t̃, µ, ξ0q that meets the following conditions:

(i) There exists a direct mechanism px̃, t̃q: for all θ, x̃pθq � xpσpθ;Bqq and t̃pθq � tpσpθ;Bqq.

(ii) There exists a choice menu rule µ that is a function of the potential values Θ � Θ1 �
� � � � ΘN and bidder ξ. This rule has an output of L ¥ 2 choices characterized as!�
Wℓ, ξ⃗ℓ

	)
ℓPt1,...,Lu

where:

(a) tWℓuℓPt1,...,Lu forms a partition of Θξ, ξ⃗ℓ P pB Y tHuq z tξu, and ξ⃗ � H signifies the
game has ended.

(b) For any ℓ such that ξ⃗ℓ � H, let Θ̂ℓ � pΘ1, . . . ,Θξ�1,Wℓ,Θξ�1, . . . ,ΘNq. Then, for

any such ℓ, there exists θξℓ , θ
1
ξℓ
P Θ̂ℓ

ξℓ
, and θ�ξℓ P Θ̂ℓ

�ξℓ
such that px̃, t̃q pθξℓ , θ�ξℓq �

px̃, t̃q
�
θ1ξℓ , θ�ξℓ

�
. If θξ P Wℓ, then the next player in the game is ξ⃗ℓ and the menu

presented to her is µpΘ̂ℓ, ξ⃗ℓq.

(c) If ℓ is such that ξ⃗ℓ � H, then for all θ, θ1 P Θ̂ℓ,
�
x̃, t̃

�
pθq �

�
x̃, t̃

�
pθ1q .

(d) The first player to take an action is ξ0, who is presented the menu µpϑN , ξ0q.
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Proof. To prove Condition i, we simply construct px̃, t̃q by iterating over all possible θ and
defining px̃, t̃q as the outcome of σpθ;Bq in G.

To prove Condition ii, we first observe that by Definition A.1, shill bidders must act “as-
if” they were real bidders and that we have restricted to pure strategies. Thus, we can always

label actions as classes
�
Wℓ, ξ⃗ℓ

	
of a partition of the remaining possible values for the current

player ξ and satisfy Condition iia. The fact that L ¥ 2 is equivalent to Conditions i and ii of
Definition A.2, and Condition iii of Definition A.2 is equivalent to Condition iib here. We can
then apply Lemma A.3 to find a game that satisfies these properties. Condition iic follows
from the fact that G is well-defined (with each terminal history associated with a single
outcome). Condition iid is simply mapping the first player in G to ξ0 and the auctioneer has
no information on bidders’ values yet.

B Strongly Shill-Proof Auctions (Section 3) Appendix

Lemma B.1. An optimal auction pG, σq is winner-paying: For all i and v,

xi pσpθ;Bqq � 0 ùñ ti pσpθ;Bqq � 0.

Proof. By the ex-post IR constraint, when xi pσpθ;Bqq � 0, we have ti pσpθ;Bqq ¤ 0. It
then follows from optimality that ti pσpθ;Bqq � 0. To see this, note that for bidder j � i,
equilibrium constraints on bidder j slacken when moving from ti   0 to ti � 0 and so her
play will remain the same. Meanwhile the transfer from bidder i strictly increases moving
from ti   0 to ti � 0.

Proof of Lemma 3.1.

Towards contradiction, suppose there exists a strongly shill-proof auction px̃, t̃, µ, ξ0q, player
ξ, and values θξ, θ�ξ, θ

1
�ξ such that x̃ξpθq � x̃ξpθξ, θ

1
�ξq, but t̃ξpθq � t̃ξpθξ, θ

1
�ξq. WLOG,

suppose t̃ξpθq ¡ t̃ξpθξ, θ
1
�ξq. Now by Lemma B.1, ξ can only have two different transfers if

that player wins the item under the allocation. Then, take R � tξu and by monotonicity,
t̃ξpθq ¡ t̃ξpθξ, θ

1
�ξq ¥ t̃pθξ, 0q and thus shilling increases revenue and the auction is not

strongly shill-proof.
Given our auction px̃, t̃, µ, ξ0q, we define Xipθi; Θq and Tipθi; Θq to be the ex-interim

quantity and transfer rules, respectively, when bidder i has value θi and the set of potential
values for all bidders is Θ.

Lemma B.2. For every optimal auction px̃�, t̃, µ, ξ0q, the ex-interim transfer rule for bidder
i is

Tipθi; Θq � Xipθi; Θqθi �
¸

m:θjm θi

�
Xipθ

jm ; Θq � pθjm�1 � θjmq
�
,

where tθjmum are the ordered atoms of Θi.

Proof. To prove that T has the claimed form, we will consider a specific non-truthful report-
ing: if a bidder has value θm, she commits to mis-reporting (selecting partitions) θm

1

for the
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rest of the game. We now follow the proof of Theorem 1 of Elkind (2007). Since our direct
mechanism is an equilibrium for real bidders, we must have that

Xipθ
jm ; Θqθjm � Tipθ

jm ; Θq ¥ Xipθ
jm�1 ; Θqθjm � Tipθ

jm�1 ; Θq, and

Xipθ
jm�1 ; Θqθjm�1 � Tipθ

jm�1 ; Θq ¥ Xipθ
jm ; Θqθjm�1 � Tipθ

jm ; Θq.

Defining Ui to be the ex-interim utility for bidder i, the preceding expressions become:

Uipθ
jm ; Θq ¥ Uipθ

jm�1 ; Θq � pθjm � θjm�1qXipθ
jm�1 ; Θq, and

Uipθ
jm�1 ; Θq ¥ Uipθ

jm ; Θq � pθjm � θjm�1qXipθ
jm ; Θq.

Thus, pθjm�θjm�1qXipθ
jm�1 ; Θq ¤ Uipθ

jm ; Θq�Uipθ
jm�1 ; Θq ¤ pθjm�θjm�1qXipθ

jm ; Θq. Hence,
any IC mechanism is such that

Uipθ
jm ; Θq � Uipθ

j1 ; Θq �
m̧

k�2

pθjm � θjm�1qX̃ipθ
jm ; Θq

where X̃ipθ
jm ; Θq P

�
Xipθ

jm�1 ; Θq, Xipθ
jm ; Θq

�
.

Therefore, we have that

Tipθ
jm ; Θq � Xipθ

jm ; Θqθjm � Uipθ
j1 ; Θq �

m̧

k�2

pθjm � θjm�1qX̃ipθ
jm ; Θq. (2)

By the ex-post IR condition, we have Uipθ
j1 ; Θq ¥ 0 for all Θ. So, solving for the optimal

transfer rule from Equation (2),

T �
i pθ

jm ; Θq � max
Ui,X̃

�
Xipθ

jm ; Θqθjm � Uipθ
j1 ; Θq �

m̧

k�2

pθjm � θjm�1qX̃ipθ
jm ; Θq

�
such that Uipθ

j1 ; Θq ¥ 0 and X̃ipθ
jm ; Θq P

�
Xipθ

jm�1 ; Θq, Xipθ
jm ; Θq

�
.

The solution to this maximization is Uipθ
j1 ; Θq � 0, X̃ipθ

jm ; Θq � Xipθ
jm�1 ; Θq. Thus, Equa-

tion (2) becomes

Tipθi; Θq � Xipθi; Θqθi �
¸

m:θjm θi

�
Xipθ

jm ; Θq � pθjm�1 � θjmq
�
.

For any value choice pW, �q P µp�, �q, let us defineW � minwPW twu andW � maxwPW twu,
respectively.

Lemma B.3 (Extended Pay-as-Bid). Consider a strongly shill-proof and optimal auction

px̃�, t̃, µ, ξ0q. Fix Θ, ξ and consider any pW, ξ⃗q P µpΘ, ξq. If there exists θ, θ1 P Θ such that
θξ, θ

1
ξ P W and µpΘ, ξq is the last action ξ takes, then,

x̃�ξ pθq � x̃�ξ pθ
1q � 1 ùñ t̃ξpθq � t̃ξpθ

1q �
TξpW ; Θq

XξpW ; Θq
,

i.e., transfers are constant conditional on allocation and are pinned down by the ex-interim
outcome functions from the lowest type in the partition.

Proof. Since an auction cannot distinguish between values in the same choice set, we can
apply Lemma 3.1 to conclude that if µpΘ, ξq is the last action ξ takes, then t̃pθq � t̃pθ1q. To
conclude the proof, we note that ξ wins no matter what her value is in W and then apply
Lemma B.1 to conclude that TξpW ; Θq � t̃ξpθq �XξpW ; Θq.
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Proof of Proposition 3.3

Under a static information structure, the single-action, first-price auction directly corre-
sponds to the direct mechanism. In a pay-as-bid mechanism, a shill bidder’s actions have
no way to influence the payments except by changing the allocation and by the definition
of orderly, if a shill bidder changes the allocation she wins the auction, which is domi-
nated. To prove that any more informative structure is not strongly shill-proof, consider
some i, j and θ where Iphq � Iph0q. By definition, information sets form a partition and
so Iphq X Iph0q � H. Observe that j can have any type at both h and h0 given that each
bidder takes a single action. Now, consider the minimal m such that j believes ex-interim
that she could win with type θm. By assumption, θm ¡ θρ

�

. Because we are considering
strong shill-proofness, we can assume without loss that j does in fact win the auction at θm.
So, at h, we can then apply Lemma B.3 to complete the proof that j must pay more at h
than at h0 and so if i P S, shill bidding is profitable at this type realization.

Proof of Theorem 3.6.

We first show that the Dutch auction with reserve price θρ is a well-defined, i.e., that the
stopping rule allows for the auction to be orderly.28 We then show that it is strongly shill-
proof. Finally, we show that there are no other public, strongly shill-proof, orderly, optimal
auctions.

The Dutch Auction is Orderly, Optimal, and Strongly Shill-Proof. The Dutch
auction quantity rule is orderly and the transfer rule is ex-post IR and monotone. Indeed,
by construction, the next player ξ⃗ is always the player with the potentially highest value
(including for tie-breaking). So, if that player indicates that she is of the highest possible
type, the outcome (allocation and transfer) is fully determined and the auction ends. The
auction ends once there are no players who could have values weakly greater than θρ.

We now prove that the Dutch auction is strongly shill-proof. Towards contradiction,
suppose not. So, there must exist some S, ξ P S, and Θ such that

 
Θξ

(
is selected from the

menu µpΘ, ξq. But by construction, this means that the auction immediately ends and the
good is allocated to the shill bidder who misreported. By Lemma B.1, the revenue from this
deviation is 0, which must be weakly less than any other possible transfer.

Uniqueness. Towards contradiction, suppose there exists a menu rule µ̃ � µDρ� that
is associated with a public, strongly shill-proof, orderly, optimal auction. Therefore, there
exists Θ and ξ such that µ̃pΘ, ξq � µDρ�pΘ, ξq. Without loss, we will suppose that Θ is the first

time in the game tree that µ̃ differs from µDρ� . Formally, for all Θ̂ � Θ, µ̃
�
Θ̂, ξ

	
� µD

�
Θ̂, ξ

	
.

We now proceed in cases.

Case 1 (Different Next Player Choice). Suppose µ̃pΘ, ξq �
!�
WL,

˜⃗
ξL

	
,
�
WH,

˜⃗
ξH

	)
, where

˜⃗
ξL � ξ⃗L or

˜⃗
ξH � ξ⃗H. If

˜⃗
ξL � ξ⃗L, then

˜⃗
ξH � ξ⃗H because the outcome is fully resolved once

a bidder selects the high partition. So, we need only consider the case where
˜⃗
ξL � ξ⃗L. By

Definition 3.2,
˜⃗
ξH � H (even if the ξ chooses

 
Θξ

(
). Now, there must exist some bidders b1

and b2 where b1 is called before b2 but p�, b2q▷ p�, b1q as otherwise the auction calls players in

28The auction is public by definition.
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the same order as the Dutch auction, which we assumed was not the case. Let R � Bz tb1u,
and for some m, θb2 � θm and θi � θm�2 for all bidders i R tb1, b2u. Taking the expression
from Lemma B.2 and dividing both sides by Xb2 , we get

Tb2pθ
m; Θq

Xb2pθ
m; Θq

� θm �
¸

k:θjk θm

Xb2 pθ
jk ; Θq

Xb2 pθ
m; Θq

� pθjk�1 � θjkq   θm.

(Note that there must be at least one such k in the summation because otherwise Θb2 � tθ
mu

and b2 would not take an action.)
The last choice b2 makes is to select a partitionW such thatW ¥ θm�2. We can therefore

apply Lemma B.3 to conclude that the transfer if b1 reports 0 must be
Tb2 pW ;Θq

Xb2
pW ;Θq

¤
Tb2 pθ

m;Θq

Xb2
pθm;Θq

 

θm. If bidder b1 instead reports θm, then bidder b2 will win and the revenue will be θm and
so the auction will not be strongly shill-proof.

Case 2 (Different Partitions). Suppose there exists pW, �q P µ̃pΘ, ξq such that W R
tWL,WHu. We need not consider the case where W � 0 because in that case either we can
consider some other choice W 1 R tWL,WHu or W � Θξ which would violate Lemma A.4. We
need not consider W ¡ Θ�ξ because Θ is the first time µ̃ differs from µDρ� and for all Θ, ξ,

and pW̃ , �q P µDρ�pΘ, ξq, it is the case that W̃ ¤ Θ�ξ. So, there are now only three sub-cases

we must consider: W P rθρ
�

,Θ�ξq, W � Θ�ξ, and W P p0, θρ
�

q.
Case 2a (W P rθρ

�

,Θ�ξq). In this sub-case, there exists m� such that θρ
�

¤ W ℓ ¤ θm
�

 
Θ�ξ. Since Θ is the first time that µ̃ differs from µDρ� , we can suppose there exists i such that

pθm
�

, ξq ▷ pθρ
�

, iq because otherwise the outcome would already be resolved or the player
rotation would be the only difference (Case 1). Then, suppose bidder i is such that i P R
and θi ¥ θm

��1. Take bidder ξ P S to shill θm
�

; and for k R ti, ξu, take θk � Θk   θm
�

.
Therefore, by Lemma B.2, observe that for the last action i takes, her ex-interim transfer
must be higher when shill ξ reports θm

�

than when she reports 0. Thus by Lemma B.3,
when θm

�

  Θ�ξ, there exists a valuation vector θ such that a shill bidder would want to
deviate away from reporting 0—and therefore such an auction is not strongly shill-proof.

Case 2b (W � Θ�ξ). In this sub-case, we know θρ
�

¤ W ℓ � Θ�ξ. Since Θ has been
generated via a Dutch auction so far, the current player has the lowest tie-breaking priority,
i.e., ξ is such that for all j � ξ, pΘj, jq ▷ pΘj, ξq. Letting j P R and θj � Θ�ξ, take bidder
ξ P S to report Θ�ξ; and for all k R tj, ξu, take θk � Θk   Θ�ξ. As noted, pΘj, jq ▷ pΘj, ξq
and so bidder j is allocated the item and not shill bidder ξ. Therefore, by the same argument
as Case 2a, shill bidding will increase revenue.

Case 2c (W P p0, θρ
�

q). By Condition iib of Lemma A.4, there must be some chance that
ξ could win the auction in order to affect outcomes. In particular, by definition of x̃�, there
exists j and θj P Θj such that pθj, jq▷ pθρ

�

, ξq and by Lemma 3.1, there exists θ1j P Θj such

that pW, ξq▷ pθ1j, jq. If any bidder is ever offered a choice with W ¥ θρ
�

, then the previous
cases imply that a shill bidder can profitably deviate and so we only have to consider the
instances where no such choice is offered. Now, suppose R � tju. Suppose all shill bidders
play the strategy of selecting the partition W̃ such that 0   W̃   θρ

�

if such a choice is
available. Let the final move that j takes to be W 0,j,last and W S,j,last under the shill bidders’
strategy of selecting 0 and not, respectively. Similarly, define Θ0,last,ΘS,last as the possible
values and t̃0j , t̃

S
j as the transfers under these respective strategies. Observe that it is without
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loss to assume that θω � W 0,j,last ¤ W S,j,last because in the latter case the shill bidders are
always acting as if they have higher values than in the former case. Next, for c P t0, Su, let

pm,ci � P
�
pθm, jq▷ pθi, iq | Θ

c,last
i

�
and define ζi,m �

pm,0
i pω,S

i

pm,S
i pω,0

i

. Observe that for all i � j and

m ¤ ω, it is the case that ζi,m ¥ 1 with at least one strict inequality because Θ
S,last

i ¥ Θ
0,last

i

for all i with strict inequality for at least one i and m. So, by Lemmatta B.2 and B.3,29

t̃Sj � t̃
0
j ¥

Tξpθ
ω; ΘS,lastq

Xξpθω; ΘS,lastq
�
Tξpθ

ω; Θ0,lastq

Xξpθω; Θ0,lastq

�
¸

ρ�¤k ω

�
pθk�1 � θkq

¹
i�j

pk,0i
pω,0i

�
�

¸
ρ�¤k ω

�
pθk�1 � θkq

¹
i�j

pk,Si
pω,Si

�

�
1±

i�j p
ω,0
i pω,Si

�

� ¸
ρ�¤k ω

pθk�1 � θkq �

�¹
i�j

pk,Si pω,0i pζi,k � 1q

��
¡ 0.

Thus, we have described a profitable shill bidding strategy in this sub-case.

C Weakly Shill-Proof Auctions (Section 4) Appendix

C.1 Single-Action Auctions (Section 4.1) Appendix

Lemma C.1. For any single-action auction, there exist unique x̃ : ϑN Ñ t0, 1uN and
t̃ : ϑN Ñ RN such that:

(i) (Correspondence) For all v P ϑN , x̃�pθq � xpσpθ;Bqq and t̃pθq � t pσpθ;Bqq.

(ii) (Individual Rationality) For all i P B and θ, x̃�i pθqθi � t̃ipθq ¥ 0.

(iii) (Incentive Compatibility) For all R, i P R, θi, and θ
1
i,

Eθ�i,R̃

�
x̃�i

�
σpθ; R̃q

	
θi � t̃ipσpθ; R̃qq | θi, si � ψpθj iq

�
¥ Eθ�i,R̃

�
x̃�i

�
σpθ1i, θ�i; R̃q

	
θi � t̃i

�
σpθ1i, θ�i; R̃q

	
| θi, si � ψpθj iq

�
. (3)

Proof. To begin, let us note that we can uniquely define px̃, t̃q point-wise based on the out-
comes in G from playing σpθ;Bq. Next, the IR constraint (Condition ii) follows immediately
from the ex-post IR condition and our construction of px̃, t̃q. Finally, Equation (3) comes
from Definition A.1 and recalling that we restrict shill bidders to actions that could have
been taken by real bidders.

29We may assume that the possible values for j are sequential above the reserve otherwise we could consider
j as a shill bidder for some other bidder instead by the cases above.
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Lemma C.2. If a single-action auction is weakly shill-proof, then for all R, θj minS,
30 and

tθiuiPS,

Eθ

�¸
kPR

t̃k

�
tθiuiPS , tθiuiRS

	
| θj minS

�
¤ Eθ

�¸
kPR

t̃k

�
0, tθiuiRS

	
| θj minS

�
.

Proof. Towards contradiction, suppose there exists R, θj minS, and tθiuiPS such that

Eθ

�¸
kPR

t̃k

�
tθiuiPS , tθiuiRS

	
| θj minS

�
¡ Eθ

�¸
kPR

t̃k

�
0, tθiuiRS

	
| θj minS

�
.

We now prove that the deviation by the coalition S where they report tθiuiPS is profitable and
therefore that the auction is not weakly shill-proof. By assumption, a shill bidder observes
actions by all bidders who take actions before her. So, tθiuiPS can condition on θj minS when
making decisions. Then, the strategy by S of committing to report tθiuiPS regardless of what
other bidders play after miniPS tiu must be strictly profitable compared to always reporting
0. Thus, we have found a strategy that does strictly better than always reporting 0: When
the values before miniPS tiu are reported as θj minS, report tθiuiPS. Otherwise, report 0. This
strategy in the direct game immediately translates to a profitable deviation in the auction
by Definition A.1 and Lemma C.1 and thus the equilibrium is not weakly shill-proof.

Now, when discussing single-action auctions, we focus on the direct mechanisms asso-
ciated to weakly shill-proof auctions and so we will refer to an auction as px̃, t̃, ψq without
reference to R.

Lemma C.3. Suppose a single-action, orderly auction px̃, t̃, ψq is weakly shill-proof. Then,
for all i, θ, and θ1j¡i,

�
x̃i pθq � x̃i

�
θj¤i, θ

1
j¡i

�
ùñ t̃i pθq � t̃i

�
θj¤i, θ

1
j¡i

��
.

Proof. Towards contradiction, suppose there exists i, θ, and θ1j¡i, such that x̃i pθq � x̃i
�
θj¤i, θ

1
j¡i

�
,

but t̃i pθ; sq ¡ t̃i
�
θj¤i, θ

1
j¡i; s

�
. Because the auction is orderly, we can apply Lemma B.1 to

conclude that x̃i pθq � x̃i
�
θj¤i, θ

1
j¡i

�
� 1. Let R � t1, . . . , iu. Then,

Eθ

�¸
kPR

t̃kptθiuiPS , tθiuiRSq | θj¤minS

�
� t̃i pθq ¡ t̃i

�
θj¤i, θ

1
j¡i

�
¥ t̃i pθj¤i, 0q .

This violates Lemma C.2, and so we have reached a contradiction.

Lemma C.4. Suppose a single-action, orderly auction px̃, t̃, ψq is mildly ex-post incentive
compatible and weakly shill-proof. Then, there exists i   N such that for all θi, θ

1
i, and

θ�i P ψ
�1
i pθj iq,

�
x̃ipθq � x̃ipθ

1
i, θ�iq ùñ t̃ipθq � t̃ipθ

1
i, θ�iq

�
.

Proof. Consider i   N,R Q i, θi, θ
1
i, and θ�i P ψ

�1
i pθj iq such that x̃ipθq � x̃ipθ

1
i, θ�iq. WLOG,

suppose θi ¡ θ1i. By monotonicity, t̃ipθq ¥ t̃ipθ
1
i, θ�iq. Towards contradiction, suppose t̃ipθq ¡

t̃ipθ
1
i, θ�iq. By the winner-paying property, t̃ipθq ¡ t̃ipθ

1
i, θ�iq implies that x̃ipθq � x̃ipθ

1
i, θ�iq �

1. However, note that t̃ipθq ¡ t̃ipθ
1
i, θ�iq would mean that the utility of reporting θ1i would

be higher than truthful reporting under true value θi which would violate the mildly ex-post
incentive compatiblility and thus t̃ipθ

1
i, θ�iq � t̃ipθ

1
i, θ�iq.

30θj minS � tθj : j   miniPS tiuu.
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Proof of Theorem 4.3.

Towards contradiction, suppose such an auction did exist. Fix i   N and θj i and then
suppose that θi   θM . Combining Lemmatta C.3 and C.4, we can see that for all θ1i and
θ�i, θ

1
�i P ψ

�1
i pθj iq, if x̃ipθq � x̃ipθ

1q, then t̃ipθq � t̃ipθ
1q. So, define t̃i as the (constant) t̃ipθq

for all θ such that x̃ipθq � 1.
In order for bidder i to have an ex-post strategy, when x̃pθq � 1, it must also be the case

that x̃ipθ
M , θ�iq � 1. So, applying the winner-paying property (and suppressing that the

expectation is conditioned on si � ψipθj iq), we have

Eθ�i

�
x̃i
�
θM , θ�i

�
θi � t̃i

�
θM , θ�i

��
� Eθ�i

�
θi � t̃

�
i | x̃ipθq � 1

�
� Eθ�i

�
θi � t̃

�
i | x̃ipθq � 0, x̃i

�
θM , θ�i

�
� 1

�
, (4)

and Eθ�i

�
x̃i pθq θi � t̃i pθq

�
� Eθ�i

�
θi � t̃

�
i | x̃ipθq � 1

�
. (5)

Taking the difference between Equation (4) and Equation (5), we see that

Eθ�i

�
x̃i
�
θM , θ�i

�
θi � t̃i

�
θM , θ�i

��
� Eθ�i

�
x̃i pθq θi � t̃i pθq

�
� Eθ�i

�
θi � t̃

�
i | x̃ipθq � 0, x̃i

�
θM , θ�i

�
� 1

�
(6)

Now, by definition of orderly, x̃ is monotone, and by assumption t̃ is monotone. If there
exists θm such that Prx̃ipθ

m, θ�iq � 1s   Prx̃ipθ
M , θ�iq � 1s, then for such m,

Eθ�i

�
x̃ipθ

m, θ�iqθ
m � t̃ipθ

m, θ�iq
�
¥ Eθ�i

�
x̃ipθ

m�1, θ�iqθ
m � t̃ipθ

m�1, θ�iq
�

¡ Eθ�i

�
x̃ipθ

m�1, θ�iqθ
m�1 � t̃ipθ

m�1, θ�iq
�
¥ 0,

where the last inequality comes from the IR condition. Thus, the IR constraint does not
bind for θi � θm. Since the good has to be allocated to the highest type, for all i   N , there
exists θ�i such that x̃ipθq � 0 and x̃ipθ

M , θ�iq � 1. Thus,

Eθ�i

�
θi � t̃

�
i | x̃ipθq � 0, x̃i

�
θM , θ�i

�
� 1

�
¡ 0. (7)

Combining Equations (6) and (7), we see that

Eθ�i

�
x̃i
�
θM , θ�i

�
θi � t̃i

�
θM , θ�i

��
¡ Eθ�i

�
x̃i pθq θi � t̃i pθq

�
. (8)

We then apply the weak shill-proofness condition to simplify Equation (3) to

Eθ�i

�
x̃i pθq θi � t̃ipθq

�
¥ Eθ�i

�
x̃i pθ

1
i, θ�iq θi � t̃i pθ

1
i, θ�iq

�
.

Taking θ1i � θM , Equation (8) violates the IC constraint from Lemma C.1—and thus we have
reached a contradiction.

C.2 Efficient Auctions (Section 4.2.1) Appendix

In order to build towards a proof Proposition 4.6, we will prove that for a certain class
of value distributions, every weakly shill-proof and efficient auction must be a semi-Dutch
auction. Formally, we assume that the value distribution is sparse:
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Definition C.5. A regular distribution F is sparse if for all k   ρ�,

θk � pθk�1 � θkq
fpθk�1q

fpθkq
  0. (9)

A distribution is sparse if the atoms are sufficiently far apart. Sparsity can also be
a reasonable assumption if the auctioneer has preferences for the auction to be completed
quickly, or otherwise finds it costly to distinguish between values that are close to each other.

Lemma C.6. Consider an efficient auction and suppose F is regular and sparse. Let R, Θ
such that Θi �

 
w : w P rΘi,Θis

(
for all i P R, and consider pW, jq such that W   θρ

�

, j R R

and for all i P R, pΘi, iq▷ pW, jq. Then, for all γ   W ,

E

�¸
iPR

t̃ipθq | Θ � pΘ�j, tγuq

�
  E

�¸
iPR

t̃ipθq | Θ � pΘ�j, tW uq

�
.

Thus, the following shilling strategy is profitable compared to always reporting 0: if there
exists pΘ, ξ,W q such that pW, �q P µpΘ, ξq and W P p0, θρ

�

q, then select W . Otherwise, select
the partition containing 0.

Proof. Consider any i P R and Θ and let C �
�°

θkPΘi
fpθkq

��1
. Then, applying Equa-

tion (2),

E
�
t̃ipθq | Θ

�
� Uipθ

j1 ; Θq � E rTipθi; Θqs � Uipθ
j1 ; Θq � C

¸
m

fpθjmqTipθ
jm ; Θq

� C
¸

m:θjmPΘi

fpθjmq

�
Xipθ

jm ; Θqθjm �
¸
k m

�
X̃k
i pΘq � pθ

jk�1 � θjkq
��

� C

� ¸
m:θjmPΘi

fpθjmqXipθ
jm ; Θqθjm �

¸
m:θjmPΘi

¸
k m

fpθjmq
�
X̃k
i pΘq � pθ

jk�1 � θjkq
��

� C
¸

m:θjmPΘi

�
θjmXipθ

jm ; Θq � pθjm�1 � θjmq
F pΘiq � F pθ

jmq

fpθjmq
X̃m
i pΘq

�
fpθjmq.

Applying the definition of the efficient allocation rule x̃E, we know that for pθm, iq ▷ pγ, jq
and pθm, iq▷ pγ1, jq, we can define Xipθ

m; Θ�jq � Xipθ
m; Θ�j, tγuq � Xipθ

m; Θ�j, tγ
1uq. Note

that W ¤ mini
 
Θi

(
by assumption and therefore, for W P

�
γ, θρ

�
�
,

E
�
t̃ipθq | Θ � pΘ�j, tγuq

�
� E

�
t̃ipθq | Θ � pΘ�j, tW uq

�
� C

¸
m:γ¤θjm W

�
θjmXipθ

jm ; Θq � pθjm�1 � θjmq
F pΘiq � F pθ

jmq

fpθjmq
X̃m
i pΘq

�
fpθjmq

¤ C
¸

m:γ¤θjm W

�
θjm � pθjm�1 � θjmq

fpθjm�1q

fpθjmq

�
fpθjmqXipθ

jm ; Θ�jq   0
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where the final inequality comes from sparsity. And so,

E

�¸
iPR

t̃ipθq | Θ � pΘ�j, tγuq

�
  E

�¸
iPR

t̃ipθq | Θ � pΘ�j, tW uq

�
,

as claimed in the statement of the lemma. Thus, committing to misreport as W is strictly
beneficial compared to any strategy that can only report γ   W .

Lemma C.7. If F is regular and sparse, then every public, weakly shill-proof, and efficient
auction is a semi-Dutch auction with cutoff θρ

�

.

Proof. Suppose F is regular and sparse. Consider an arbitrary weakly shill-proof and efficient
auction, px̃E, t̃, µ, ξ0q, and consider any θ such that maxi tθiu   θρ

�

. We prove that both
parts of the definition of a semi-Dutch auction are necessary.

Proof of Condition i of Definition 4.5. First we prove that if, for any player ξ and set
of possible values Θ, there exists pW, �q P µpΘ, ξq where 0   W   θρ

�

, then Θ � qΘ. Towards

contradiction, suppose that there exists a pξ,Θ,W q such that Θ � qΘ, pW, �q P µpΘ, ξq
W P

�
0, θρ

�
�
, and ξ P S.

Let us first prove it is without loss to assume pξ,Θ,W q is such that for all i, Θi � 0
or Θi ¥ θρ

�

. If there exists pξ,Θ,W q and i such that Θi P p0, θ
ρ�q, let us label that set as

ΘK and let Θ0 � Θ1 � . . . � ΘK be the sequence of on-path possible value sets preceding
ΘK . Let the players called along the path be ξ0, ξ1, . . . , ξK and the value partition selected
by player k to be W k. Note that Θ0 � ϑN and so for all i, Θ̃i � 0 or Θ̃i ¥ θρ

�

. So,
the set K �

 
k   K : W k P p0, θρ

�

q
(
� H and therefore k� � minkPK tku is well-defined.

If k is such that W k R p0, θρ
�

q and for all i, Θk
i R p0, θ

ρ�q, then it must be the case that
for all i, Θk�1

i R p0, θρ
�

q. Since k� is the first time in the game that a player selects a
partition with W k P p0, θρ

�

q, it must be the case that for all i, Θk
i � 0 or Θ̃i ¥ θρ

�

. Since

Θk� � ΘK , Θk� � qΘ. Thus, pξk
�

,Θk� ,W kq is such that Θk� � qΘ,
�
W k� , �

�
P µ

�
Θk� , ξk

�
�
,

W k� P
�
0, θρ

�
�
, and for all i, Θk�

i � 0 or Θk�

i ¥ θρ
�

.

So, in order to have W P p0, θρ
�

q, it must be the case that 0 P Θξ. Thus it is possible
for ξ to be a shill bidder while having so far only selected partitions that contain 0. Let
S �

 
i : Θi   θρ

�
(
Y tξu. By assumption that Θ � qΘ, there must exist i such that Θi ¥ θρ

�

and thus we can suppose that R � H. By assumption that W P
�
0, θρ

�
�
, we can suppose

that R is such that for all i P R, Θi ¡ W . By Lemma C.6, this would contradict the
hypothesis that the auction is weakly shill-proof and so we must have Θ � qΘ when there
exists pW, �q P µpΘ, ξq such that 0   W   θρ

�

.
Proof of Condition ii of Definition 4.5. We now prove that for any player ξ and set

of possible values Θ � qΘ, it is the case that µpΘ, ξq � µDρ�pΘ, ξq. Consider any option

pW, �q P µ pΘ, ξq. Observe that by Lemma C.6, it is not the case that 0   W   Θ�ξ. So,
W ¥ Θ�ξ. Since this is the case for all Θ, it must therefore be true that W � Θξ. This is

because if Θξ ¡ Θ ¥ Θ�ξ, then there must have existed some earlier menu
�
W̃ , �

	
P µ

�
Θ̃, ξ̃

	
for which W̃   Θ̃ξ̃.

So far we have proven that µpΘ, ξq �
!�
WL,

˜⃗
ξL

	
,
�
WH,

˜⃗
ξH

	)
. To complete the proof,

we have to prove that
˜⃗
ξL � ξ⃗L and

˜⃗
ξH � ξ⃗H. Towards contradiction, suppose

˜⃗
ξL � ξ⃗L
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or
˜⃗
ξH � ξ⃗H. If

˜⃗
ξH � ξ⃗H, then, by Lemma A.4, Condition (ii), there exists i such that

Θi � Θξ,
�
Θi, i

�
▷
�
Θξ, ξ

�
. We can let R � tiu and then apply Lemma C.6 to contradict the

hypothesis that the auction is weakly shill-proof. If
˜⃗
ξL � ξ⃗L, then, as argued in the proof

of Theorem 3.6, the menu presented to
˜⃗
ξL must not have the auction end immediately, no

matter what partition
˜⃗
ξL selects. Thus, our previous argument for the case where

˜⃗
ξH � ξ⃗H

applies, and we can conclude that µpΘ, ξq � µDpΘ, ξq.

Proof of Proposition 4.6

The statement follows as a corollary of Lemma C.7. Consider any optimal reserve θρ
�

, M
atoms below the optimal reserve, and M atoms above the optimal reserve. We construct a
sparse (and regular) distribution F̃ with optimal reserve θρ

�

, M atoms below the optimal
reserve, and M atoms above the optimal reserve. To begin, let δ such that Mδ ¤ θρ

�

and
pM � 1qδ ¡ θρ

�

. Then for all k ¤ M , let θk�1 � θk � δ and f̃pθkq � e�λpk�2qδ � e�λpk�1qδ.
Note that

φ̃k � θk � pθk�1 � θkq
1� F̃ pθkq

f̃pθkq
� pk � 1qδ � δ

e�λpk�1qδ

e�λpk�2qδ � e�λpk�1qδ
,

and so φ̃k�1 � φ̃k � kδ � pk � 1qδ � δ ¡ 0; hence, F̃ satisfies the regularity condition for
k ¤M .

In order for θρ
�

to be an optimal reserve of F̃ , it must be the case that for k� such that
φ̃k

�

¥ 0 and φ̃k
��1   0, it is also the case that θρ

�

P ppk� � 1qδ, k�δs. Such a k� must be
equal to rǩs, where ǩδ � δ

eλδ�1
� 0. Thus, M � 1 � k� � r 1

eλδ�1
s.

In order for F̃ to be sparse, it must satisfy Equation (9), which here simplifies to

pk � 1qδ �

�
1�

e�λpk�2qδ � e�λpk�1qδ

e�λpk�1qδ � e�λpkqδ



  kδ ùñ

e2λδ � 1

eλδ � 1
 

k

k � 1
.

So, F̃ is sparse if

e2λδ  
2� peλδ � 1qp2pk� � ǩq � 1q

1� ppk� � ǩq � 1qpeλδ � 1q
. (10)

Selecting λ such that M � 1 � ǩ � k�, Equation (10) is satisfied.

Finally, to finish constructing F̃ , we simply select atoms θM�2, . . . , θM�M and respective
probability weights to satisfy

φ̃k is non-decreasing and

M�M̧

k�M�2

f̃pθkq � e�λpM�1qδ.

This system of constraints has at most M constraints and 2pM � 1q free variables, so the
system can be satisfied. Thus, we have constructed a regular and sparse F̃ that has the
required values of θρ

�

,M , and M . Then, we can apply Lemma C.7 to conclude the proof.
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C.3 Strategy-Proof Auctions (Section 4.2.2) Appendix

Definition C.8. Let F be a discrete distribution with ordered atoms 0 � θ1   . . .  
θM and F be a continuous distribution with p.d.f. f . If YF � F , then F is a discrete
approximation of F when YF � F is defined as

YF �

$'&'%
θ1 YF ¤ θ1

θk YF P pθ
k�1, θks

θM YF ¡ θM�1

. (11)

For such a distribution F , let ∆ � maxk
 
θk � θk�1

(
. As convention, let F�1 be the left

pseudo-inverse: F�1pxq � max
 
θk : x ¥ F pθkq

(
.

Definition C.9. Let F be a discrete approximation of F . The distribution F is amonotone

hazard rate (MHR) distribution if fpwkq
1�F pwkq

is monotonically increasing in k and hpxq �
f pxq

1�F pxq is monotonically increasing in x.

Lemma C.10. If the value distribution is a discrete MHR distribution F , then for all

θY ¥ F�1

�
F
�
θρ

�
	
� max

1¤n N

#�
max

"
1�

θρ
�

θρ� � 2∆

�
fpθρ

�

q

1� F pθρ�q


n

, 0

*
1{n
+�

, (12)

the ascending, screening auction with screening level θY is a weakly shill-proof, ex-post in-
centive compatible, and optimal auction.

Proof of Lemma C.10.

The Ascending, Screening Auction is Orderly and Optimal. We first prove that
the auction is well-defined, orderly, and optimal. The transfer and allocation function are
orderly and optimal, so we only have to show that the menu rule can induce this outcome
function. Let us examine the English auction phase first. The auction ends if and only if
Θ   θM . When that occurs, the auction has determined θi for all i given θi ¥ θρ

�

. Thus, the
outcome is fully determined. In the second-price auction phase, each value weakly greater
than θY is determined precisely (and there are at least two players with values weakly greater
than θY ) and so the outcome rule is determined.

The Ascending, Screening Auction is Ex-Post Incentive Compatible. Observe
that the definition of ex-post incentive compatiblility (Definition 4.1) is a function solely of
the direct mechanism px̃, t̃q and not of the menu rule µ. Both the English auction phase and
the second-price auction use the same transfer function t̃2. The entire auction has the optimal
allocation rule x̃� and so the ascending, screening auction is ex-post incentive compatible.

The Ascending, Screening Auction is Weakly Shill-Proof. By assumption that
the screen level is at least θρ

�

, any potential shill bidder will be asked to play at least once
in the English auction before being able to play in the second-price auction. If the optimal
shill bid is 0 in the first round of the English auction, then the auction is weakly shill-proof
because once a bidder reports 0, she “drops out” and does not take another action.
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Observe that given the form of the transfer rule, the maximum amount that a bidder i
with value θi would have to pay is θi. Thus, the maximum possible gain in revenue from a shill
bidder deviating is at most the difference between the first and second moment of F . Next,
note that MHR distributions are regular. Regularity implies that if a shill bidder reports a
non-zero value in the English auction stage and the auction concludes before reaching the
second-price stage, the expected gain must be weakly less than 0. So, when considering
the expected gain of misreporting, we can think of the expected gain from manipulating
outcomes in the English auction component as at most 0 and can focus on manipulating
outcomes in the second-price stage. Therefore, the total gains from misreporting as a shill
bidder must be bounded above by the probability that a shill bidder is able to manipulate
the outcome of the second-price auction multiplied by the expected difference between the
first and second moments of the value distribution conditional on reaching the second-price
auction stage.

Let F be the continuous distribution for which F is a discrete approximation. For an
exponential distribution with rate λ, the expected difference between the first and second
moments of T independent draws is 1

λ
. The exponential distribution, with its constant hazard

rate, has the thickest right tail of any MHR distribution and so has the largest expected
difference between its first and second moments (see proof of Theorem 5.1 in Bahrani et al.
(2024)). In particular, since we are only interested in value draws above the reserve ρ�F and
F has a non-decreasing hazard rate, we can take the rate λ � hpρ�F q �

1
ρ�F

and conclude

that the maximum difference between the first and second moments of F must be bounded
above by ρ�F . Recall that hpρ�F q �

1
ρ�F

because F is regular and ρ�F is the optimal reserve

of F . Examining Equation (11), we can see that our discrete approximation pools draws
from a continuous distribution upwards to atoms and so, if the absolute difference between
two samples of the continuous distribution is κ, the absolute difference between the discrete
approximation samples would be at most κ � ∆. Thus, the maximum possible expected
difference between the first and second moments of F conditional on being above the reserve
is at most ρ�F �∆. Note that we also know that

��θρ� � ρ�F �� ¤ ∆.
Suppose bidder i P S and it is the first time she is taking an action. Then, under the rules

of the auction, she has not indicated that her value is greater than θρ
�

yet. For any real bidder
j � i, there are two cases: either bidder j has indicated her value is weakly greater than θρ

��
P
�
θj   θY

�
� F pθY q � F pθρ

�

q
�
or she has not yet taken an action

�
P
�
θj   θY

�
� F pθY q

�
.

So, if K ¤ N real bidders have not dropped out yet (i.e., indicated that their value is less
than θρ

�

), then the probability that the auction would continue to the second-price auction

is at most 1�
�
F
�
θY

�
� F

�
θρ

�
��K

. Therefore, the maximum expected gain for a shill bidder
from misreporting in her first action of the English auction phase when K bidders have not
dropped is at most �

1�
�
F
�
θY

�
� F

�
θρ

�
		K
�

ρ�F �∆
�
. (13)

We now turn to bounding the loss from reporting a non-zero value as a shill bidder. If
shill bidder i misreports her value as θm at some point in the English auction phase and then
she wins the item without taking another action, then the transfer the seller would have
received had i not misreported is at least max

 
θρ

�

, θm�1
(
¥ θρ

�

, assuming at least one real
bidder has value weakly above the reserve. To bound the probability that a real bidder j
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would have won the item if not for shill bidder i’s misreport, we can consider the probability
that bidder j has indicated her value is at least Θj ¥ θρ

�

. By Definition C.9, the hazard
rate of F is non-decreasing. So,

P rθj ¤ θms ¥

¸
tk:Θj¤θ

k θmu

fpθkq

1� F pΘjq
¥

fpΘjq

1� F pΘjq
¥

fpθρ
�

q

1� F pθρ�q
.

Combining the preceding inequality with our hypothesis that K bidders have not dropped
out yet, the expected loss for a shill bidder of misreporting is at least

θρ
�

�

�
fpθρ

�

q

1� F pθρ�q


K

. (14)

We conclude the proof by showing that θY satisfying Equation (12) implies that the
expected revenue loss from misreporting as a shill is weakly larger than the expected gain.
Beginning with Equation (12), we can see that for all K   N ,

θY ¥ F�1

�
F
�
θρ

�
	
� max

1¤n N

#�
max

"
1�

θρ
�

θρ� � 2∆

�
fpθρ

�

q

1� F pθρ�q


n

, 0

*
1{n
+�

¥ F�1

��F �
θρ

�
	
�

�
max

#
1�

θρ
�

θρ� � 2∆

�
fpθρ

�

q

1� F pθρ�q


K

, 0

+�1{K
�


¥ F�1

��F �
θρ

�
	
�

�
max

#
1�

θρ
�

ρ�F �∆

�
fpθρ

�

q

1� F pθρ�q


K

, 0

+�1{K
�
.

This implies that

θρ
�

�

�
fpθρ

�

q

1� F pθρ�q


K

¥
�
1� pF pθY q � F pθρ

�

qqK
	 �
ρ�F �∆

�
.

The left-hand side of the preceding equation corresponds to Equation (14), the lower bound
on the expected loss from misreporting as a shill bidder, and the right-hand side corresponds
to Equation (13), the upper bound on the expected gain from misreporting and thus we have
shown that it is equilibrium not to shill when θY is sufficiently high.

Proof of Proposition 4.12.

Let Fm be the discrete approximation of the exponential distribution with rate λ � 1 and
atoms at t0, 2, . . . , 2mu. Then, using the argument from the proof of Proposition 4.6, Fm
is regular and MHR. For all m ¡ 2, an optimal reserve is θρ

�

� 4. Observe that Y � � 3
satisfies Equation (12) because

θρ
�

θρ� � 2∆

�
fpθρ

�

q

1� F pθρ�q


n

�
1

2
pe2 � 1qn ¡ 1 for all n ¥ 1.
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We apply Lemma C.10 to conclude that the ascending, screening auction with screen level
θY

�

is weakly shill-proof, ex-post incentive compatible, and optimal for all Fm. Then,
QAS,Y �pFmq � 2 and QEpFmq � m � 2. Thus, QASpFm, Y

�q{QEpFmq Ñ 0 as m Ñ 8,
concluding the proof.

D Affiliation and Interdependence (Section 5) Appendix

Lemma D.1 (Karlin and Rinott (1980)). For any non-decreasing function g, if F 1 ©Aff F ,
then Eθ�F 1 rgpθqs ¥ Eθ�F rgpθqs.

Lemma D.2. For any function g : RN Ñ R with decreasing differences, if F 1 ©Aff F , then
for any index i and for all θ1i ¡ θ2i ¡ θ3i ,

Eθ�F 1
��
gpθ1i , θ�iq � gpθ

2
i , θ�iq

�
�
�
gpθ2i , θ�iq � gpθ

3
i , θ�iq

��
¤ Eθ�F

��
gpθ1i , θ�iq � gpθ

2
i , θ�iq

�
�
�
gpθ2i , θ�iq � gpθ

3
i , θ�iq

��
.

Proof. Consider any i, ∆1, and ∆2. Then, define

g̃pθi, θ�iq �
�
gpθi �∆1 �∆2, θ�iq � gpθi �∆1, θ�iq

�
�
�
gpθi �∆1, θ�iq � gpθi, θ�iq

�
.

By the assumption that g has decreasing differences, g̃ is non-increasing in θi. We can then
immediately apply Lemma D.1 to complete the proof.

Proof of Lemma 5.5

To prove that T has the claimed form, we will consider a specific non-truthful reporting: if
a bidder has value θm, she commits to mis-reporting (selecting partitions) θm

1

for the rest of
the game. Since our direct mechanism is an equilibrium for real bidders, we must have

E
��
Xipθ

jm ;Θqvpθjm , θ�iq � Tipθ
jm ; Θq

	
��

Xipθ
jm�1 ; Θqvpθjm , θ�iq � Tipθ

jm�1 ; Θq
�
| θi � θjm , θ�i P Θ�i

�
¥ 0, and

E
��
Xipθ

jm�1 ;Θqvpθjm�1 , θ�iq � Tipθ
jm�1 ; Θq

	
��

Xipθ
jm ; Θqvpθjm�1 , θ�iq � Tipθ

jm ; Θq
�
| θi � θjm�1 , θ�i P Θ�i

�
¥ 0.

Defining Ui to be the ex-interim utility for bidder i, the preceding expressions become:

Uipθ
jm ; Θq ¥ Uipθ

jm�1 ; Θq � pv�i pθ
jm�1 , θjm ; Θq � v�i pθ

jm�1 , θjm�1 ; ΘqqXipθ
jm�1 ; Θq, and

Uipθ
jm�1 ; Θq ¥ Uipθ

jm ; Θq � pv�i pθ
jm , θjm ; Θq � v�i pθ

jm , θjm�1 ; ΘqqXipθ
jm ; Θq.

Thus,

pv�i pθ
jm�1 ,θjm ; Θq � v�i pθ

jm�1 , θjm�1 ; ΘqqXipθ
jm�1 ; Θq

¤ Uipθ
jm ; Θq � Uipθ

jm�1 ; Θq

¤ pv�i pθ
jm , θjm ; Θq � v�i pθ

jm , θjm�1 ; ΘqqXipθ
jm ; Θq.
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Then, by the same logic as in Lemma B.2, a mechanism with an optimal transfer rule is such
that

Uipθ
jm ; Θq �

m̧

k�2

pv�i pθ
jk�1 , θjk ; Θq � v�i pθ

jk�1 , θjk�1 ; ΘqqXipθ
jk�1 ; Θq.

Therefore, we have that

Tipθ
jm ; Θq � Xipθ

jm ; Θqv�i pθ
jm , θjm ; Θq�

m̧

k�2

pv�i pθ
jk�1 , θjk ; Θq�v�i pθ

jk�1 , θjk�1 ; ΘqqXipθ
jk�1 ; Θq.

(15)
Re-arranging concludes the proof.

Proof of Lemma 5.6

There are two cases to consider. In the first case, suppose maxθPS tθu ¡ maxθPS1 tθu. In this
case, we can form subsets S1, . . . , SK and S 11, . . . , S

1
K such that

(i) S �
�
k Sk and S 1 �

�
k S

1
k;

(ii) For all k, x P Sk, and y P S
1
k: x ¡ y; and

(iii) For all k1 ¡ k, x P Sk, and y P S
1
k1 : x   y.

Such partitions can be formed inductively. First, define the base case as

SK �

"
θ P S : θ ¡ max

θ̃PS1

!
θ̃
)*

and S 1K �

"
θ P S 1 : θ ¡ max

θ̃PSzSK

!
θ̃
)*

.

Then, define the inductive case as

Sk �

#
θ P S z

�¤
k1¡k

Sk1

�
: θ ¡ max

θ̃PS1zp
�

k1¡k S
1

k1q

!
θ̃
)+

and

S 1k �

#
θ P S 1 z

�¤
k1¡k

Sk1

�
: θ ¡ max

θ̃PSzp
�

k1¥k Sk1q

!
θ̃
)+

.

Note that these two partitions have the same number of elements because minθPS tθu ¡
minθPS1 tθu. Then, we can re-write the right-hand side of Equation (1) as

Ķ

k�1

pPF rθi P Sk | SsEθ�F rgpθq | θi P Sks � PF rθi P S
1
k | S

1sEθ�F rgpθq | θi P S
1
ksq .

Note that by assumption, the marginals are equal: PF 1 rθ1 P Sks � PF rθ1 P Sks for all k.
We can then recall that g is non-decreasing, weakly super-modular, and that affiliation is
equivalent to log-supermodularity of the type distribution to conclude that for all k,

PF 1 rθi P Sk | SsEθ�F 1 rgpθq | θi P Sks � PF 1 rθi P S
1
k | S

1sEθ�F 1 rgpθq | θi P S
1
ks

¥ PF rθi P Sk | SsEθ�F rgpθq | θi P Sks � PF rθi P S
1
k | S

1sEθ�F rgpθq | θi P S
1
ks

Then, we can sum over all k to conclude the proof in this case.
Now, we consider the case where maxθPS tθu   maxθPS1 tθu. In this case we can form

subsets S1, . . . , SK and S 11, . . . , S
1
K�1 such that
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(i) S �
�
k Sk and S 1 �

�
k S

1
k;

(ii) For all k, x P Sk, and y P S
1
k: x ¡ y; and

(iii) For all k1 ¡ k, x P Sk, and y P S
1
k1 : x   y.

The inductive construction is the same as the first case with the base case changed to

S 1K�1 �

"
θ P S 1 : θ ¡ max

θ̃PS

!
θ̃
)*

and SK �

#
θ P S : θ ¡ max

θ̃PS1zS1K�1

!
θ̃
)+

.

We then re-write the right-hand side of Equation (1) as

1

2
PF rθi P S1sEθ�F rgpθq | θi P S1s � PF rθi P S

1
1sEθ�F rgpθq | θi P S

1
1s �

1

2
PF rθi P SKsEθ�F rgpθq | θi P SKs � PF

�
θi P S

1
K�1

�
Eθ�F

�
gpθq | θi P S

1
K�1

�
�

1

2

Ķ

k�2

�
pPF rθi P SksEθ�F rgpθq | θi P Sks � PF rθi P S

1
ksEθ�F rgpθq | θi P S

1
ksq

� pPF rθi P S
1
ksEθ�F rgpθq | θi P S

1
ks � PF rθi P Sk�1sEθ�F rgpθq | θi P Sk�1sq

�

Now, observe that the first two differences must decrease under F 1 because g is non-decreasing
and weakly super-modular. We can then recall that g has decreasing differences, apply
Lemma D.2, and then sum over all k to conclude that the sum also must decrease and
therefore obtain the desired conclusion.

Proof of Theorem 5.4

Affiliation. Towards contrapositive, suppose that the auction is not shill-proof (strong or
weak, we will highlight where the proofs diverge) under F and consider some F 1 ©Aff F .
There exists some realization of θ under F such that a shill bidder i deviates at Θ. Since
x̃, µ, and ξ0 are all fixed, we know from Lemma 5.5 that under weak shill-proofness that
the only way for expected revenue under weak shill-proofness to change is for the ex-interim
expected value of some bidder j � i to change. We can also apply Lemma B.3 to see that
the same is true under strong shill-proofness. Thus, in order to prove that the auction is
not shill-proof for either weak or strong shill-proofness under F 1, it is sufficient to show that
for all j � i, if the expected transfers from Tj from manipulation Θ̂ compared to truthful
play Θ� under F , then the same manipulation is profitable under F 1. Fix j and consider
the profitably manipulated possible values Θ̂. We can re-express the expected transfers from
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bidder j from Lemma 5.5 as

Eθ�F rTjpθj; Θ
�q | θ P Θ�s

� Eθ�F

�
E rx̃jpθj, θ�jqvpθj, θ�jq | θj � θj, x̃jpθj, θ�jq � 1s

�
¸

m:θkm θj

P
�
x̃jpθ

km , θ�jq � 1
� �
E
�
vpθkm , θ�jq | θj � θkm�1 , x̃jpθ

km , θ�jq � 1
�

� E
�
vpθkm , θ�jq | θj � θkm , x̃jpθ

km , θ�jq � 1
� �
| θ�j P Θ

�
�j, θj P Θ

�
j

�
.

Now observe that with manipulation only changes that the expectation is taken with respect
to θ�j P Θ̂�j. Note that we are not worrying about the true distribution from bidder j1 � j
because when considering revenue from bidder j, we consider her expected transfers, and then
integrate over j’s true expected distribution, θj P Θ

�
j . Given that v satisfies Assumption 5.1

and x̃ is orderly, we know that

E rx̃jpθj, θ�jqvpθj, θ�jq | θj � θj, x̃jpθj, θ�jq � 1s

� Cm �
�
E
�
vpθkm , θ�jq | θj � θkm�1 , x̃jpθ

km , θ�jq � 1
�
� E

�
vpθkm , θ�jq | θj � θkm , x̃jpθ

km , θ�jq � 1
��

(16)
also has the same properties (with respect to θj) for any m such that θkm   θj and constant
Cm. Therefore, we can conclude that the necessary conditions for Lemma 5.6 are satisfied
and apply it to conclude that

Eθ�F 1
�
Tjpθj; Θ̂q � Tjpθj; Θ

�q | θ P Θ�
�
¥ Eθ�F

�
Tjpθj; Θ̂q � Tjpθj; Θ

�q | θ P Θ�
�
.

Thus, the auction is not shill-proof under F 1.

Common Values. Towards contrapositive, suppose that the auction is not shill-proof
(strong or weak, we will highlight where the proofs diverge) under v and consider some
v1 ©Com v. There exists some realization of v under v such that a shill bidder i deviates at
Θ. Since x̃, µ, and ξ0 are all fixed, we know from Lemma 5.5 that under weak shill-proofness
that the only way for expected revenue under weak shill-proofness to change is for the ex-
interim expected value of some bidder j � i to change. We can also apply Lemma B.3 to see
that the same is true under strong shill-proofness. Thus, in order to prove that the auction is
not shill-proof for either weak or strong shill-proofness under F 1, it is sufficient to show that
for all j � i, if the expected transfers from Tj from manipulation Θ̂ compared to truthful
play Θ� under v, then the same manipulation is profitable under v1. This is immediate: since
v1 is point-wise higher than v and more super-modular, then we can see that Equation (16)
is larger under v1 than v no matter the constant and therefore the auction is not shill-proof.

Proof of Proposition 5.7

The proof that a strongly shill-proof auction must be pay-as-bid is the same as in Lemma 3.1
because that argument is ex-post and bidders’ values are weakly increasing in all types. To
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prove that the conjectured efficient allocation rule is efficient, observe that by the assumption
that a bidder values her own signal more than that of others, the efficient ex-post allocation
is such that x̃i � 0 for i R argmaxj tθju and

°
j x̃jpθq � 1 for all θ. The assumption that the

seller has 0 value for the good completes the proof that x̃E is the efficient allocation rule.
Recall that a shill-proof auction must be pay-as-bid, and observe that bids must be strictly

increasing as a function of own signal in order to be incentive compatible. Next, because
the bidder who has the highest ex-ante signal will have the highest ex-post valuation, under
any allocation rule, the bidder with the highest signal who is allocated will have the highest
bid. Therefore, to maximize transfers the optimal allocation rule is such that x̃i � 0 for
i R argmaxj tθju. To conclude the proof, observe that by Lemma 5.5, the fact that changing
the allocation rule conditional on only the maximum value will not change that bidder’s
value, and by the standard arguments, the optimal allocation rule uses a reserve type.
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E Supplemental Appendix

The following definition for an extensive-form auction is taken31 from Li (2017):

Definition E.1. An extensive form auctionG is defined as the tuple pH, , A,A, P, tIiuiPB , px, tqq
such that:

(i) H is a set of histories, along with a binary relation   on H that represents precedence.
In addition:

(a)   forms a partial order and pH, q forms an arborescence.

(b) There exists an initial history hH such that there does not exist h1 where h1   hH.

(c) The set of terminal histories is Z � th :  Dh such that h   h1u.

(d) The set of immediate successors to h is succphq.

(ii) A is the set of possible actions.

(iii) A : HzhH Ñ A maps histories to the most recent action taken to reach it. In addition:

(a) For all h, Aphq is one-to-one on succphq.

(b) The set of actions available at h is

Aphq �
¤

h1Psuccphq

Aph1q.

(iv) P : HzZ Ñ B is the player function for any given non-terminal history.

(v) Ii is a partition of th : P phq � iu such that:

(a) Aphq � Aph1q when h and h1 are in the same cell of the partition, and

(b) Aphq X Aph1q � H when h and h1 are not in the same cell of the partition.

(vi) For every z P Z, z � px, tq, such that
°N
i�1 xi ¤ 1, xi P r0, 1s, and ti P R.

In order to define an information order, we will use the notation that when the current
set of possible values is Θ, a player i’s knowledge of what values are possible is I iΘ.

Definition E.2. A menu rule µ1 is more informative than µ, µ1 ©Info µ, if µp�, �q � µ1p�, �q
for all game states Θ and all possible information sets I, I 1, when I � I 1, it is the case that

P rIΘ � I | µ1s � P rIΘ � I 1 | µ1s ¥ P rIΘ � I | µs � P rIΘ � I 1 | µs .

Proposition E.3. Consider any affiliated type distribution F and value function v satisfying
Assumption 5.1. Suppose px̃, t̃�px̃, µ, ξ0, v, F q, µ, ξ0q is orderly and strongly shill-proof. Then,
for any µ1 such that µ ©Info µ1, it is the case that px̃, t̃�px̃, µ1, ξ0, v, F q, µ

1, ξ0q is strongly
shill-proof.

31We modify the definition to remove notation we do not use and to make it specific to auctions.

47



Proof. Towards contrapositive, suppose that the auction is not strongly shill-proof under µ
and consider some µ1 ©Info µ. There exists some realization of θ under F such that a shill
bidder i deviates at Θ. Since F is affiliated and x̃, ξ0, and µ are all fixed, we can apply
Lemmatta 5.5, B.3 and D.1 to conclude that the only way for expected revenue under strong
shill-proofness to change is for ex-interim expected values for the winner j � i to change.
There can be no change in allocation since j has the highest value among the real bidders
and so since the allocation is orderly, any change in the allocation would result in a shill
bidder winning the item. Recall that the winning bidder conditions her valuation on the
realization that she wins, i.e., she conditions on the assumption that pθj, jq ▷ pθk, kq for all
k � j. Thus, it is without loss with regards to how the winning bidder j will estimate her
valuation to assume that IΘ is such that for all y P IΘ and k � j, pθj, jq▷ pyk, kq. There are
now two cases to consider. In the first case, consider that under µ1, the information sets in
the support are a super-set of those in the support under µ. We then condition on the event
of the same realization of the information set that leads to a profitable deviation to find that
the auction is not strongly shill-proof under µ1. In the second case, we do not assume that
the support under µ contains elements that µ1 does not. It may be that the realization of
the information set for the winner’s last move is not in the support of µ. However, because
µ1 ©Info µ, we can know that there is some realization of the information structure such
that 0 is not contained in it. This is because we know that there exists an information set
that is strictly smaller than that realization and by Bayes plausibility, the complement must
also be in it. Further, a shill bidding deviation means selecting a partition which does not
include 0 and by Lemma A.4 Condition 2a, we know that said partition does not intersect
the partition containing 0. Since the allocation is fixed, one of the partitions must increase
transfers from the winner in order to have the average transfer under every realization of the
information set average out to the transfer under the coarser information set. We then select
the highest transfer among these realizations to find a profitable deviation and complete the
proof.

Example E.4. Consider the sealed-bid, first-price (pay-as-bid) optimal auction with equi-
librium bids b1 in the regular, IPV environment. The näıve implementation of allocation and
transfer rule px̃�, t̃1q in a public auction would be to query each bidder sequentially on what
her value is and then have the payment rule be t̃1, but t̃1 is not the direct transfer rule of
any equilibrium of this game. Indeed, consider the last bidder who takes a move, and label
that bidder N . If θN ¡ maxi N tbiu, then the only possible equilibrium bid—and therefore
the transfer function—is maxi N tbiu.

If we modify the direct transfer rule to represent the bid that each bidder submits in
equilibrium in this sequential form (as one could solve for inductively), the auction would
be weakly shill-proof by regularity. In particular, while a shill bid can force later bidders to
pay a higher price, the probability that no one will want to pay that higher price outweighs
the benefit by regularity. However, such an auction is not strongly shill-proof because, given
full knowledge of real bidders’ valuations, a shill bidder will be incentivized to bid just below
the highest valuation of a subsequent bidder.

Example E.5. Let F pxq � 1 � e�0.1x and let F1, F2 be discrete approximations of F with
atoms t0, 5, 9, 14, 20u and t0, 3, 7, 14, 20u, respectively. It can be verified that both these
distributions are regular and have optimal reserve θρ

�

� 14. Consider a variant of the
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efficient Dutch auction, with the modification that, if all bidders have indicated values less
than 20, then the auction queries bidders from lowest-to highest-priority as to whether their
value is at least 9. If no one indicates that their value is at least 9, then the Dutch auction
continues. If at least one person does indicate that their value is at least 9, then bidders are
queried from lowest- to highest-priority as to whether their value is 14, and the transfer is 14
if at least two people have value 14, and 9 if only one person does. It can be verified that if
the value distribution is F1, the auction just described is weakly shill-proof, but if the value
distribution is F2, then the auction is not weakly shill-proof. When the value distribution is
F2, in expectation, a shill bidder will want to report that her value is 9. In fact, Lemma C.7
(see appendix) implies that if the value distribution is F2, then the auction in this example
must be a semi-Dutch auction with cutoff at least 14.

E.1 Credibility

The following definitions are adapted from Akbarpour and Li (2020) to match our notation
and specialized to the auction setting:

For any extensive form game G, we can define a messaging game as follows:

1. The auctioneer chooses to:

(a) Select an outcome and end the game; or

(b) Go to step 2.

2. The auctioneer chooses some bidder i P B and sends a message m � Ii P Ii.

3. Bidder i privately observes message m � Ii and chooses reply r P ApIiq.

4. The auctioneer privately observes r.

5. Go to step 1.

We can now write bidder i’s observations in the game as ppmk
i , r

k
i q
τi
k�1, ωiq where τi is the

number of observations i has and ωi is the information partition over outcomes that i ob-
serves. Let oipσ0, σ, θq be i’s observation when the auctioneer plays σ0, the bidders play σ,
and the type profile is θ.

Definition E.6 (Akbarpour and Li (2020)). Let σG0 be the rule-following auctioneer
strategy. Formally, σG0 is defined by the following algorithm: Initialize ĥ :� hH. At each

step, if ĥ P z, end the game and choose outcome px, tqpĥq. Else, contact agent P pĥq and send
message m � IP pĥq such that P pĥq P IP pĥq. Upon receiving reply r, update ĥ to h such that

h P succpĥq and Aphq � r, then iterate.

Definition E.7 (Akbarpour and Li (2020), Definition 3). Given some promised strategy
profile pσ0, σq, auctioneer strategy σ̂0 is safe if, for all agents i P B and all type profiles θ,
there exists θ1�i such that oipσ̂0, σ, θq � oipσ0, σ, pθi, θ

1
�iqq. We denote by Σ�

0pσ0, σq the set of
safe strategies.
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Definition E.8 (Akbarpour and Li (2020), Definition 4). pG, σq is credible if

σG0 P argmax
σ0PΣ

�
0 pσ

G
0 ,σq

#
Eθ

�¸
iPB

tipσ0, σ, θq

�+

Proof of Proposition 6.1

Strong Shill-Proofness Ñ Credibility. We prove the contrapositive: Suppose pG, σq is
not credible. Let σ̂0 P Σ�

0pσ
G
0 , σq be a profitable and safe deviation by the auctioneer. By

Definition E.7, there exists θ and
 
θ1�i

(
i
such that oipσ̂0, σ, θq � oipσ0, σ, pθi, θ

1
�iqq for all i. By

Lemma B.1, only one bidder i� has ti�pσpθi� , θ
1
�i�qq � 0 and so ti�pσpθi� , θ

1
�i�qq ¡ ti�pσpθqq

because σ̂0 is profitable. Then, let R � ti�u, and by ex-post monotonicity,

ti�pσpθi� , θ
1
�i�qq ¡ ti�pσpθqq ¥ ti�pσpθi� , 0qq,

and so the auction is not strongly shill-proof.
Credibility Ñ Weak Shill-Proofness. We prove the contrapositive: Suppose pG, σq

is not weakly shill-proof. Let σ̂ P ΣS be a profitable shilling strategy. Then, by Definition A.1,
for all R, there exists θ, θ1 such that σ̂pθ;Rq � σpθ;Bq. Consider the following reporting
strategy σ̂0: for all i P R, report play as if i P R is following σ̂; and for all i R R, report in
the rule-following manner. This strategy is safe because σ̂ P ΣS. To see that it is profitable
compared to σG0 , consider what happens when the winning bidder i is or is not in R.32

Conditional on i P R winning, σ̂0 increases expected revenue because σ̂ is a profitable shill
bidding strategy. Conditional on i R R winning, shill bidding would have led 0 revenue for
the seller and, by Lemma B.1, σ̂0 must have non-negative revenue. Thus, our described
reporting strategy is a profitable, safe strategy and therefore the auction is not credible.

E.2 Generalizing Credibility in the Single-Action Case

Definition E.9. Fix a single-action auction with exogenous signal ψ and a set of real bidders
R. The set of safe deviations to report to i P B is

Aψ
i pθj¤iq �!

a : Dθ̃�i such that
�
j   i, θj � 0 ùñ θ̃j � θj

�
and a �

�
σipθi;ψipθ̃j iqq, σ�i

�
θi, θ̃�i;B

		)
.

The total set of safe deviations is

Aψpθq �

# 
a⇝i

(
: a⇝i P Aψ

i pθj¤iq and
Ņ

i�1

xi
�
a⇝i

�
¤ 1

+
.

Definition E.9 allows the auctioneer to report any value she chooses when a bidder’s
declared valuation is 0. Note that if we take the canonical setting where there are no
exogenous signals, the above assumption is without loss.

32Note that if no one has value above the optimal reserve, there will be no winner under any safe strategy,
so let us only consider the case where the good is allocated.
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Definition E.10. A single-action auction is ψ-credible if for all θ and ta⇝iu P Aψpθq, we
have ¸

i

tipa
⇝iq ¤

¸
i

tipσpθ;Bqq.

Lemma E.11. For a single-action auction, define the augmented (direct) inverse qψ�1
i asqψ�1

i pθq � t0u Y ψ
�1
i pθj iq. Then for

ϑψpθq �

# 
θ⇝i

(
: θ⇝i P qψ�1

i pθq,
¸
i

x̃ipθ
⇝iq ¤ 1

+
,

the auction is credible if and only if for all θ, and tθ⇝iu P ϑψpθq,¸
i

t̃ipθ
⇝iq ¤

¸
i

t̃ipθq.

Proof. Apply Lemma C.1, specifically the unique mapping between px̃, t̃q and px, tq to Defi-
nitions E.8 and E.9 to see that the lemma holds.

Lemma E.12. Suppose a single-action auction is weakly shill-proof, but not strongly shill-
proof. Then, there exist R, θR, and θ�R such that¸

kPR

t̃kpθR, θ�Rq ¡
¸
kPR

t̃kpθR, 0q. (17)

Proof. Suppose that pG, σq is weakly shill-proof, but not strongly shill-proof. Because pG, σq
is weakly shill-proof, for all θ and R,R1, we can define σ̂pθq � σpθ;Rq � σpθ;R1q. Since
pG, σq is not strongly shill-proof, σ̂ must not be an ex-post strategy for the shill bidders.
So, for some realization of R and θR there exists a profitable deviation for the shill bidders;
examining the set of possible deviations ΣS in Definition A.1, we see that any profitable
deviating actions induces a profitable misreport θ�R in the direct mechanism for some R and
θR; proving Equation (17) can be satisfied.

Lemma E.13. If a single-action auction is strongly shill-proof, then for all R, i R R, θi,
and θ�i,

°
kPR t̃kpθi, θ�iq ¤

°
kPR t̃kp0, θ�iq.

Proof. Towards contradiction, suppose that there exists R, i R R, θi, and θ�i such that°
kPR t̃kpθi, θ�iq ¡

°
kPR t̃kp0, θ�iq. So in the direct game reporting 0 is not a dominant strat-

egy for shill bidders. This implies, from Condition i of Lemma C.1, that there exists a
deviation in the auction such that for some value vectors, the seller raises more revenue.
Therefore, the auction is not strongly shill-proof.

Proof of Proposition 6.2

Weak Shill-Proofness Ñ pψ � Idq-Credibility. Suppose the auction is not pψ � Idq-
credible. Then, combining Lemma E.11 with the ex-post IR condition, there exist θ, tθ⇝iu P
ϑψpθq and k� such that t̃k�pθ

⇝k�q ¡ t̃k�pθq. Applying the definition of orderly and the
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winner-paying property, for all j � k�, t̃jpθ
⇝k�q � 0. Since ψ � Id, for all j ¤ k, it is the

case that θ⇝k
�

j � θj or θj � 0. Let R � t1, . . . , k�u. Then,¸
iPR

t̃ipθ
⇝k�q � t̃k�pθ

⇝k�q

¥ t̃k�
�
θ1, . . . , θk� , θ

⇝k�
k��1, . . . , θ

⇝k�
N

	
¥ t̃k� pθ1, . . . , θk� , 0, . . . , 0q

�
¸
iPR

t̃ipθR, 0q.

Thus, we can apply Lemma C.2 to conclude that the auction is not weakly shill-proof.
ψ-CredibilityÑWeak Shill-Proofness. Suppose the auction is ψ-credible. Towards

contradiction, suppose the auction is not weakly shill-proof. So, there exists R and θ such
that σpθ;Rq � σpθ;Bq. In particular, this means that shill bidders have, in expectation,
a profitable deviation relative to acting as real bidders with valuation 0. If this is true in
expectation, there must then exist θ � pθR, 0q and θ̃�R such that¸

iPR

t̃ippθR, θ̃�Rqq ¡
¸
iPR

t̃ippθR, 0qq.

Now, let us consider the messaging deviation

 
θ⇝i

(
iPB
�

#�
θR, θ̃�R

	
i P R

pθR, 0q otherwise
.

By the definition of credibility, the auctioneer can report any value to other bidders when the
value reported to him is 0 and bidders with value 0 are told the other bidders’ true reports.
Therefore, tθ⇝iu P ϑψpθR, 0q and¸

i

t̃ipθ
⇝iq �

¸
iPR

t̃ipθR, θ̃�Rq �
¸
iRR

t̃ipθR, 0q ¡
¸
i

t̃ippθR, 0qq.

This contradicts Lemma E.11, and so the auction must be weakly shill-proof.
pψ � Hq-Credibility Ñ Strong Shill-Proofness. Suppose that the auction is not

strongly shill-proof and ψ � H. There are two cases to consider: either the auction is
not weakly shill-proof or it is. If the auction is not weakly shill-proof, then we can ap-
ply the previous case to conclude the auction is not pψ � Hq-credible. If the auction is
weakly shill-proof, but not strongly shill-proof, then by Lemma E.12, there exists R, k� P R,
and θ such that t̃k�pθq ¡ t̃k�pθR, 0q. Thus, we can construct the following profitable auction-
eer reporting deviation:

 
θ⇝i

(
iPB
�

#
pθR, θ�Rq i � k�

pθR, 0q otherwise
.

Since ψ � H, we know that
!
θ̃⇝i

)
P ϑψpθR, 0q. The total transfers are then¸

i

t̃i
�
θ⇝i

�
� t̃k�pθq �

¸
i�k�

t̃i pθR, 0q ¡
¸
i

t̃i pθR, 0q .
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Hence, by Lemma E.11, we see that the auction is not credible.
Strong Shill-ProofnessÑ ψ-Credibility. Suppose that the auction is not ψ-credible.

Then, combining Lemma E.11 with the ex-post IR condition, there exists θ, tθ⇝iu P ϑψpθq
and k� such that t̃k�pθ

⇝k�q ¡ t̃k�pθq. Recall, by the definition of ψ�1, that θ⇝k
�

k� � θk� .
Suppose R � tk�u. Then,¸

iPR

t̃ipθ
⇝k�q � t̃k�pθ

⇝k�q ¡ t̃k�pθq ¥ t̃k�pθk� , 0q �
¸
iPR

t̃k�pθk� , 0q.

Therefore, by Lemma E.13, the auction is not strongly shill-proof.

53


	Introduction
	Shill Bidding in Auctions
	Overview of Results
	Related Work
	Outline of the Paper

	Model
	Bidders – Real and Shill
	Auction Environment
	Shill-Proofness
	Revelation Principle

	Strongly Shill-Proof Auctions
	Direct Mechanisms
	Indirect Mechanisms
	Dutch Auctions

	Weakly Shill-Proof Auctions
	Trilemma
	Other Weakly Shill-Proof Auctions
	Weakly Shill-Proof and Efficient Auctions
	Weakly Shill-Proof and Strategy-Proof Auctions


	Affiliation, Interdependent Values, and Shill-Proofness
	Generalized Model
	Shill-Proof Order
	Extending our Characterizations

	Discussion
	Shill-Proofness vs. Credibility
	Dominant Strategies

	Model (sec:model) Appendix
	Strongly Shill-Proof Auctions (sec:ssp) Appendix
	Weakly Shill-Proof Auctions (sec:wsp) Appendix
	Single-Action Auctions (ss:singleaction) Appendix
	Efficient Auctions (ss:wspdutchauction) Appendix
	Strategy-Proof Auctions (ss:strategyproof) Appendix

	Affiliation and Interdependence (sec:affandsp) Appendix
	Supplemental Appendix
	Credibility
	Generalizing Credibility in the Single-Action Case


